Calculate power for bivariate latent change score models based on Monte Carlo simulation.
powerBLCS(N=100, T=5, R=1000, betay=0, my0=0, mys=0, varey=1,
vary0=1, varys=1, vary0ys=0, alpha=0.05, betax=0, mx0=0,
mxs=0, varex=1, varx0=1, varxs=1, varx0xs=0, varx0y0=0,
varx0ys=0, vary0xs=0, varxsys=0, gammax=0, gammay=0, ...)
A matrix with power for each parameter.
Sample size, can be a scalar or a vector. For better performance, make sure N is at least two times of T
Number of times, occasions or waves of measurements, can be a scalar or a vector
Number of replications to run in Monte Carlo simulation. Recommended 1000 or more
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Significance level
Options can be used for lavaan
Zhang, Z., & Liu, H. (2018). Sample size and measurement occasion planning for latent change score models through Monte Carlo simulation. In E. Ferrer, S. M. Boker, and K. J. Grimm (Eds.), Advances in longitudinal models for multivariate psychology: A festschrift for Jack McArdle (pp. 189-211). New York, NY: Routledge.
if (FALSE) {
powerBLCS(R=1000)
}
Run the code above in your browser using DataLab