Calculate power for univariate latent change score models based on Monte Carlo simulation.
powerLCS(N=100, T=5, R=1000, betay=0, my0=0, mys=0,
varey=1, vary0=1, varys=1, vary0ys=0, alpha=0.05, ...)
The lavaan model specification of the bivariate latent change score model
The lavaan output
Output in terms of RAM matrices
Sample size, can be a scalar or a vector. For better performance, make sure N is at least two times of T
Number of times, occasions or waves of measurements, can be a scalar or a vector
Number of replications to run in Monte Carlo simulation. Recommended 1000 or more
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Population parameter values
Significance level
Options can be used for lavaan
Zhang, Z., & Liu, H. (2018). Sample size and measurement occasion planning for latent change score models through Monte Carlo simulation. In E. Ferrer, S. M. Boker, and K. J. Grimm (Eds.), Advances in longitudinal models for multivariate psychology: A festschrift for Jack McArdle (pp. 189-211). New York, NY: Routledge.
if (FALSE) {
powerLCS(R=1000)
}
Run the code above in your browser using DataLab