# binary example with individual data (1=event,0=no event), uniform prior
prior.unif <- mixbeta(c(1, 1, 1))
data.indiv <- c(1, 0, 1, 1, 0, 1)
posterior.indiv <- postmix(prior.unif, data.indiv)
print(posterior.indiv)
# or with summary data (number of events and number of patients)
r <- sum(data.indiv)
n <- length(data.indiv)
posterior.sum <- postmix(prior.unif, n = n, r = r)
print(posterior.sum)
# binary example with robust informative prior and conflicting data
prior.rob <- mixbeta(c(0.5, 4, 10), c(0.5, 1, 1))
posterior.rob <- postmix(prior.rob, n = 20, r = 18)
print(posterior.rob)
# normal example with individual data
sigma <- 88
prior.mean <- -49
prior.se <- sigma / sqrt(20)
prior <- mixnorm(c(1, prior.mean, prior.se), sigma = sigma)
data.indiv <- c(-46, -227, 41, -65, -103, -22, 7, -169, -69, 90)
posterior.indiv <- postmix(prior, data.indiv)
# or with summary data (mean and number of patients)
mn <- mean(data.indiv)
n <- length(data.indiv)
posterior.sum <- postmix(prior, m = mn, n = n)
print(posterior.sum)
Run the code above in your browser using DataLab