optim
to allow the optimization for the regression coefficients and baseline
hazards appropriate for the data set at hand. It is where the functions weight_estimator_BLH, weight_estimator_BLH_noprior,
deriv_weight_estimator_BLH, deriv_weight_estimator_BLH_noprior
are required.weights_BLH(geDataT, survDataT, q, s, a, b, groups, par, method = c("Nelder-Mead", "L-BFGS-B", "CG", "BFGS", "SANN"), noprior = 1, extras = list(),
dist = NULL)
"Nelder-Mead":
for the Nelder-Mead simplex algorithm.
"L-BFGS-B":
for the L-BFGS-B quasi-Newtonian method.
"BFGS":
for the BFGS quasi-Newtonian method.
"CG":
for the Conjugate Gradient decent method
"SANN":
for the simulated annealing algorithm.optim
function.optim
function. See it's documentation for details.data(Bergamaschi)
data(survData)
weights_BLH(geDataT=Bergamaschi[1:10,1:2], survDataT=survData[1:10, 9:10], q=1, s=1, a=1.56, b=0.17, groups=3, par=c(0.1,0.2,0.3,rep(0,ncol(Bergamaschi))), method = "CG", noprior = 1, extras =
list(reltol=1), dist = NULL)
Run the code above in your browser using DataLab