Learn R Programming

REAT (version 1.2.1)

disp: Coefficients for disparities

Description

Calculating the Gini coefficient (non-standardized and standardized), the Herfindahl-Hirschman coefficient (non-standardized and standardized) and the Herfindahl-Hirschman equivalent number and the coefficient of variation (non-standardized and standardized)

Usage

disp(x)

Arguments

x
a numeric vector containing the regarded objects

Value

a list with the 7 entires (=result values): with the 7 entires (=result values):

Details

The Gini coefficient and the Herfindahl-Hirschman coefficient are measures of the degree of a concentration (e.g. household income, sales or market shares of firms in an industry, distribution of facilities in regions). The coefficient of variation is a simple standardized measure of distribution. This function returns these coefficients as non-standardized ($G$, $HHI$, $CV$) and standardized values ($G*$, $HHI*$, $CV*$) and the HHI equivalent number ($HHI_{eq}$). For more information about the coefficients, see the single function documentations (gini, herf, herf.eq and cv).

References

Doersam, P. (2004): “Wirtschaftsstatistik anschaulich dargestellt”. Heidenau : PD-Verlag.

Lessmann, C. (2005): “Regionale Disparitaeten in Deutschland und ausgesuchten OECD-Staaten im Vergleich”. ifo Dresden berichtet, 3/2005. https://www.cesifo-group.de/link/ifodb_2005_3_25-33.pdf.

See Also

gini, herf, herf.eq, cv

Examples

Run this code
# Example from Doersam (2004)
# (Sales of four car manufacturing firms)
sales <- c(20,50,20,10)
disp(sales)

# Supply and distribution of physicians:
data(health4)
# Medical supply in the 420 regions
disp(health4$phys_gen)

Run the code above in your browser using DataLab