Learn R Programming

REAT (version 1.2.1)

lm.beta: Beta regression coefficients

Description

Calculating the standardized (beta) regression coefficients of linear models

Usage

lm.beta(linmod, dummy.na = TRUE)

Arguments

linmod
A lm object (linear regression model) with more than one independent variable
dummy.na
logical argument that indicates if dummy variables should be ignored when calculating the beta weights (default: TRUE). Note that beta weights of dummy variables do not make any sense

Value

A list containing all independent variables and the corresponding standardized coefficients.

Details

Standardized coefficients (beta coefficients) show how many standard deviations a dependent variable will change when the regarded independent variable is increased by a standard deviation. The $\beta$ values are used in multiple linear regression models to compare the real effect (power) of the independent variables when they are measured in different units. Note that $\beta$ values do not make any sense for dummy variables since they cannot change by a standard deviation.

References

Backhaus, K./Erichson, B./Plinke, W./Weiber, R. (2016): “Multivariate Analysemethoden: Eine anwendungsorientierte Einfuehrung”. Berlin: Springer.

Examples

Run this code
x1 <- runif(100)
x2 <- runif(100)
# random values for two independent variables (x1, x2)
y <- runif(100)
# random values for the dependent variable (y)
testmodel <- lm(y~x1+x2)
# OLS regression
summary(testmodel)
# summary
lm.beta(testmodel)
# beta coefficients

Run the code above in your browser using DataLab