Learn R Programming

REAT (version 1.3.1)

health2:

Description

Dataset containing 420 subregions in South Lower Saxony and corresponding demographic data.

Usage

data("health2")

Arguments

Format

A data frame with 420 observations on the following 8 variables.
region
Region ID
pop
a numeric vector containing the population of the subregion
lat
a numeric vector containing the latitude of the subregion
lon
a numeric vector containing the longitude of the subregion
city
a logical argument that indicates of the subregion is part of the city of Goettingen or not
share65
a numeric vector containing the share of inhabitants in the age of 65 or older
share18
a numeric vector containing the share of inhabitants younger than 18
asc
a numeric vector containing the corresponding age structure coefficient

References

Wieland, T./Dittrich, C. (2016): “Bestands- und Erreichbarkeitsanalyse regionaler Gesundheitseinrichtungen in der Gesundheitsregion Goettingen”. Projektbericht. Goettingen : GOEDOC, Dokumenten- und Publikationsserver der Georg-August-Universitaet Goettingen. http://webdoc.sub.gwdg.de/pub/mon/2016/3-wieland.pdf

Examples

Run this code
# Pharmacies in a 500 m buffer:
data(health1)
# Health service locations (physicians and pharmacies)
data(health2)
# 420 regions
health2_city <- health2[health2$city == 1,] 
# only regions in the city of Goettingen (city=1)
pharmacy <- health1[health1$type == "pharm",] 
# Only pharmacies
pharm_city <- dist.buf(health2_city, "region", "lat", "lon", pharmacy, 
"location", "lat", "lon", bufdist = 500)
# Pharmacies in a 500 m buffer from the statistical districts in Goettingen

Run the code above in your browser using DataLab