cv (x, is.sample = TRUE, coefnorm = FALSE, weighting = NULL,
wmean = FALSE, na.rm = FALSE)
numeric
vector
is.sample = TRUE
, so the denominator of variance is \(n-1\))
coefnorm = FALSE
)
numeric
vector containing weighting data to compute the weighted coefficient of variation (instead of the non-weighted cv)
coefnorm = FALSE
the function returns the non-standardized cv (\(0 < v < \infty\)). If coefnorm = TRUE
the standardized cv (\(0 < v* < 1\)) is returned.The cv (variance, standard deviation) can be weighted by using a second weighting vector. As there is more than one way to weight measures of statistical dispersion, this function uses the formula for the weighted cv (\(v_w\)) from Sheret (1984). The cv can be standardized, while this function uses the formula for the standardized cv (\(v*\), with \(0 < v* < 1\)) from Kohn/Oeztuerk (2013). The vector x
is automatically treated as a sample (such as in the base sd
function), so the denominator of variance is \(n-1\), if it is not, set is.sample = FALSE
.
Capello, R./Nijkamp, P. (2009): “Introduction: regional growth and development theories in the twenty-first century - recent theoretical advances and future challenges”. In: Capello, R./Nijkamp, P. (eds.): Handbook of Regional Growth and Development Theories. Cheltenham: Elgar. p. 1-16.
Lessmann, C. (2005): “Regionale Disparitaeten in Deutschland und ausgesuchten OECD-Staaten im Vergleich”. ifo Dresden berichtet, 3/2005. https://www.cesifo-group.de/link/ifodb_2005_3_25-33.pdf.
Huang, Y./Leung, Y. (2009): “Measuring Regional Inequality: A Comparison of Coefficient of Variation and Hoover Concentration Index”. In: The Open Geography Journal, 2, p. 25-34.
Kohn, W./Oeztuerk, R. (2013): “Statistik fuer Oekonomen. Datenanalyse mit R und SPSS”. Berlin: Springer.
Sheret, M. (1984): “The Coefficient of Variation: Weighting Considerations”. In: Social Indicators Research, 15, 3, p. 289-295.
Siljak, D. (2015): “Real Economic Convergence in Western Europe from 1995 to 2013”. In: International Journal of Business and Economic Development, 3, 3, p. 56-67.
gini
, herf
, hoover
, rca
# Regional disparities / sigma convergence in Germany
data(G.counties.gdp)
# GDP per capita for German counties (Landkreise)
cvs <- apply (G.counties.gdp[54:68], MARGIN = 2, FUN = cv)
# Calculating cv for the years 2000-2014
years <- 2000:2014
plot(years, cvs, "l", ylim=c(0.3,0.6), xlab = "year",
ylab = "CV of GDP per capita")
# Plot cv over time
Run the code above in your browser using DataLab