Learn R Programming

REAT (version 3.0.2)

shiftp: Shift-share prognosis

Description

Forecasting regional employment growth with the shift-share analysis (Gerfin model)

Usage

shiftp(e_ij1, e_ij2, e_i1, e_i2, e_i3, time1, time2, time3,
industry.names = NULL, print.results = TRUE, 
plot.results = FALSE, plot.colours = NULL, plot.title = NULL,
plot.portfolio = FALSE, ...)

Arguments

e_ij1

a numeric vector with \(i\) values containing the employment in \(i\) industries in region \(j\) at time 1

e_ij2

a numeric vector with \(i\) values containing the employment in \(i\) industries in region \(j\) at time 2

e_i1

a numeric vector with \(i\) values containing the total employment in \(i\) industries at time 1

e_i2

a numeric vector with \(i\) values containing the total employment in \(i\) industries at time 2

e_i3

a numeric vector with \(i\) values containing the total employment in \(i\) industries at time 3 (forecast value for total employment)

time1

start year (single value)

time2

end year of empirical employment data (single value)

time3

year of prognosis (single value)

industry.names

Industry names (e.g. from the relevant statistical classification of economic activities)

print.results

Logical argument that indicates if the function shows the results or not

plot.results

Logical argument that indicates if the results have to be plotted

plot.colours

If plot.results = TRUE: Plot colours

plot.title

If plot.results = TRUE: Plot title

plot.portfolio

Logical argument that indicates if the results have to be plotted in a portfolio matrix additionally

Additional arguments for the portfolio plot (see the function portfolio)

Value

A list containing the following objects:

components

A matrix containing the shift-share components related to the chosen method

growth

A matrix containing the industry-specific growth values

prog

A matrix containing the industry-specific prognosis values

method

The chosen method, e.g. "Dunn"

Details

The shift-share analysis (Dunn 1960) adresses the regional growth (or decline) regarding the over-all development in the national economy. The aim of this analysis model is to identify which parts of the regional economic development can be traced back to national trends, effects of the regional industry structure and (positive) regional factors. The growth (or decline) of regional employment consists of three factors: \(l_{t+1}-l_t = nps + nds + nts\), where \(l\) is the employment in the region at time \(t\) and \(t+1\), respectively, and \(nps\) is the net proportionality shift, \(nds\) is the net differential shift and \(nts\) is the net total shift. Other variants are e.g. the shift-share method by Gerfin (Index method), the dynamic shift-share analysis (Barff/Knight 1988) or the extension by Esteban-Marquillas (1972).

As there is more than one way to calculate a Dunn-type shift-share analysis and the terms are not used consequently in the regional economic literature, this function and the documentation use the formulae and terms given in Farhauer/Kroell (2013). If shift.method = "Dunn", this function calculates the net proportionality shift (\(nps\)), the net differential shift (\(nds\)) and the net total shift (\(nts\)) where the last one represents the residuum of (positive) regional factors.

This function calculates an employment prognosis based on a Gerfin shift-share analysis for two years.

References

Arcelus, F. J. (1984): “An Extension of Shift-Share Analysis”. In: In: Growth and Change, 15, 1, p. 3-8.

Barff, R. A./Knight, P. L. (1988): “Dynamic Shift-Share Analysis”. In: Growth and Change, 19, 2, p. 1-10.

Casler, S. D. (1989): “A Theoretical Context for Shift and Share Analysis”. In: Regional Studies, 23, 1, p. 43-48.

Dunn, E. S. Jr. (1960): “A statistical and analytical technique for regional analysis”. In: Papers and Proceedings of the Regional Science Association, 6, p. 97-112.

Esteban-Marquillas, J. M. (1972): “Shift- and share analysis revisited”. In: Regional and Urban Economics, 2, 3, p. 249-261.

Farhauer, O./Kroell, A. (2013): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.

Gerfin, H. (1964): “Gesamtwirtschaftliches Wachstum und regionale Entwicklung”. In: Kyklos, 17, 4, p. 565-593.

Schoenebeck, C. (1996): “Wirtschaftsstruktur und Regionalentwicklung: Theoretische und empirische Befunde fuer die Bundesrepublik Deutschland”. Dortmunder Beitraege zur Raumplanung, 75. Dortmund.

Spiekermann, K./Wegener, M. (2008): “Modelle in der Raumplanung I. 4 - Input-Output-Modelle”. Power Point presentation. http://www.spiekermann-wegener.de/mir/pdf/MIR1_4_111108.pdf.

See Also

portfolio, shiftd, shifti, , shift.growth

Examples

Run this code
# NOT RUN {
# Example data from Spiekermann/Wegener 2008:
# two regions, two industries
region1_2000 <- c(1400, 3600)
region1_2006 <- c(1000, 4400)
region2_2000 <- c(1200, 1800)
region2_2006 <- c(1100, 3700)
region3_2000 <- c(1100, 900)
region3_2006 <- c(800, 1000)
# regional values
nation_2000 <- c(3700, 6300)
nation_2006 <- c(2900, 9100)
# national values
nation_2010 <- c(2500, 12500)
# national prognosis values

# Analysis for region 1:
shiftp(region1_2000, region1_2006, nation_2000,
nation_2006, e_i3 = nation_2010, 
time1 = 2000, time2 = 2006, time3 = 2010)
# Analysis for region 2:
shiftp(region2_2000, region2_2006, nation_2000, 
nation_2006, e_i3 = nation_2010, 
time1 = 2000, time2 = 2006, time3 = 2010)
# Analysis for region 3:
shiftp(region3_2000, region3_2006, nation_2000, 
nation_2006, e_i3 = nation_2010, 
time1 = 2000, time2 = 2006, time3 = 2010)
# }

Run the code above in your browser using DataLab