powered by
Calculating three measures of industry concentration (Gini, Krugman, Hoover) for a set of \(I\) industries
conc(e_ij, industry.id, region.id, na.rm = TRUE)
a numeric vector with the employment of the industry \(i\) in region \(j\)
a vector containing the IDs of the industries \(i\)
a vector containing the IDs of the regions \(j\)
logical argument that indicates whether NA values should be excluded before computing results
A matrix with three columns (Gini coefficient, Krugman coefficient, Hoover coefficient) and \(I\) rows (one for each regarded industry).
matrix
This function is a convenient wrapper for all functions calculating measures of spatial concentration of industries (Gini, Krugman, Hoover)
Farhauer, O./Kroell, A. (2014): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.
Schaetzl, L. (2000): “Wirtschaftsgeographie 2: Empirie”. Paderborn : Schoeningh.
gini.conc, krugman.conc2, hoover
gini.conc
krugman.conc2
hoover
# NOT RUN { data(G.regions.industries) conc_i <- conc (e_ij = G.regions.industries$emp_all, industry.id = G.regions.industries$ind_code, region.id = G.regions.industries$region_code) # }
Run the code above in your browser using DataLab