Learn R Programming

REAT (version 3.0.3)

ellison.c2: Ellison-Glaeser Coagglomeration Index

Description

Calculating the Coagglomeration Index by Ellison and Glaeser for \(IxI\) sets of two industries

Usage

ellison.c2(e_ik, industry, region, e_j = NULL, print.results = TRUE)

Arguments

e_ik

a numeric vector containing the no. of employees of firm \(k\) from industry \(i\)

industry

a vector containing the IDs/names of the industries \(i\)

region

a vector containing the IDs/names of the regions \(j\)

e_j

a numeric vector containing the total employment of the regions \(j\)

print.results

logical argument that indicates whether the results are printed or not (for internal use)

Value

A single value of \(\gamma^c\)

Details

The Ellison-Glaeser Coagglomeration Index is not standardized. A value of \(\gamma^c = 0\) indicates a spatial distribution of firms equal to a dartboard approach. Values below zero indicate spatial dispersion, values greater than zero indicate clustering.

References

Ellison G./Glaeser, E. (1997): “Geographic concentration in u.s. manufacturing industries: A dartboard approach”. In: Journal of Political Economy, 105, 5, p. 889-927.

Farhauer, O./Kroell, A. (2014): “Standorttheorien: Regional- und Stadtoekonomik in Theorie und Praxis”. Wiesbaden : Springer.

Nakamura R./Morrison Paul, C. (2009): “Measuring agglomeration”. In: Capello, R./Nijkamp, P. (eds): Handbook of Regional Growth and Development Theories, p. 305-328.

See Also

ellison.a, ellison.a2, ellison.c, gini.conc, gini.spec, locq, locq2, howard.cl, howard.xcl, howard.xcl2, litzenberger, litzenberger2

Examples

Run this code
# NOT RUN {
# Example from Farhauer/Kroell (2014):
data(FK2014_EGC)

ellison.c2(FK2014_EGC$emp_firm, FK2014_EGC$industry, 
FK2014_EGC$region, FK2014_EGC$emp_region)
# this may take a while
# }

Run the code above in your browser using DataLab