KMOS(x, use = c("everything", "all.obs", "complete.obs", "na.or.complete",
"pairwise.complete.obs"))## S3 method for class 'MSA_KMO':
print(x, stats = c("both", "MSA", "KMO"), vars = "all",
sort = FALSE, show = "all", digits = getOption("digits"), ...)
KMOS()
, an object of class 'MSA_KMO'
for the print
method.bart_spher
; see also cor
)."MSA"
, "KMO"
or "both"
(default) are printed."all"
or a vector of index numbers of variables to print the MSAs for.'MSA_KMO'
The KMO and MSAs for individual items are (adapted from Equations (3) and (4) in Kaiser & Rice, 1974; note that $a$ is $q$ in the article): $$\mathit{KMO}=\frac{\sum_{i=1}^{k}\sum_{j=1}^{k}r_{ij}^2}{\sum_{i=1}^{k}\sum_{j=1}^{k}r_{ij}^2+a_{ij}^2},\qquad i\neq j$$ $$\mathit{MSA}_i=\frac{\sum_{j=1}^{k}r_{ij}^2}{\sum_{j=1}^{k}r_{ij}^2+a_{ij}^2},\qquad j\neq i$$
Historically, as suggested in Kaiser (1974) and Kaiser & Rice (1974), a rule of thumb for those values is:
Kaiser, H. F. (1974). An Index of Factorial Simplicity. Psychometrika, 39(1), 31--36.
Kaiser, H. F., & Rice, J. (1974). Little Jiffy, Mark IV. Educational and Psychological Measurement, 34, 111--117.
cor
, bart_spher
set.seed(5L)
daten <- data.frame("A"=rnorm(100), "B"=rnorm(100), "C"=rnorm(100),
"D"=rnorm(100), "E"=rnorm(100))
cor(daten)
KMOS(daten, use = "pairwise.complete.obs")
Run the code above in your browser using DataLab