Learn R Programming

REndo (version 1.3)

copulaCont1: Fitting Linear Models with One Enedogenous Regressor using Gaussian Copula

Description

Estimates a linear model with one endogenous variable using Gaussian copula. The optimization is done via maximum likelihood, using the BFLG algorithm.

Usage

copulaCont1(formula, endoVar, param = NULL, intercept = NULL, data)

Arguments

formula

the model formula, e.g. y ~ X1 + X2 + X3.

endoVar

a string with the name of the endogenous variable/s, in quotation marks.

param

initial values for the parameters to be optimized over.

intercept

an optional parameter. The model is estimated by default with intercept. If no intercept is desired or the regressors matrix X contains already a column of ones, intercept should be given the value "FALSE", otherwise the value "TRUE".

data

a data frame or matrix containing the variables of the model.

Value

Returns a list with the best set of parameters found.