Estimates a linear model with one endogenous variable using Gaussian copula. The optimization is done via maximum likelihood, using the BFLG algorithm.
copulaCont1(formula, endoVar, param = NULL, intercept = NULL, data)
the model formula, e.g. y ~ X1 + X2 + X3
.
a string with the name of the endogenous variable/s, in quotation marks.
initial values for the parameters to be optimized over.
an optional parameter. The model is estimated by default with
intercept. If no intercept is desired or the regressors matrix X
contains already
a column of ones, intercept should be given the value "FALSE", otherwise the value "TRUE".
a data frame or matrix containing the variables of the model.
Returns a list with the best set of parameters found.