authorize()
function uses oauth2.0_token
to obtain the OAuth tokens. Expired tokens will be refreshed automamaticly. If you have no client.id
and client.secret
the package provides predefined values.
authorize(username = getOption("rga.username"), client.id = getOption("rga.client.id"), client.secret = getOption("rga.client.secret"), cache = getOption("rga.cache"), reauth = FALSE, token = NULL)
TRUE
means to cache using the default cache file .oauth-httr
, FALSE
means not to cache. A string means to use the specified path as the cache file. Otherwise will be used the rga.cache
option value (.ga-token.rds
by default). If username
argument specified token will be cached in the .username-token.rds
file.TRUE
to reauthorization with the same or different Google Analytics account.Token2.0
object (icluding TokenServiceAccount
) to setup directly.Token2.0
object containing all the data required for OAuth access.
client.id
and client.secret
arguments directly in the authorize()
function call
rga.client.id
and rga.client.secret
options into the R session
When the authorize()
function is used the Token
variable is created in the separate .RGAEnv
environment which is not visible for user. So, there is no need to pass the token argument to any function which requires authorization every time. Also there is a possibility to store token in separate variable and to pass it to the functions. It can be useful when you are working with several accounts at the same time.
username
, client.id
and client.secret
params can be specified by an appropriate options (with RGA prefix): RGA_USERNAME, RGA_CLIENT_ID, RGA_CLIENT_SECRET.
oauth_app
oauth2.0_token
Token-class
To revoke all tokens: revoke_all
Setup environment variables: Startup
## Not run:
# authorize(client.id = "my_id", client.secret = "my_secret")
# # if set RGA_CLIENT_ID and RGA_CLIENT_SECRET environment variables
# authorize()
# # assign token to variable
# ga_token <- authorize(client.id = "my_id", client.secret = "my_secret")
# ## End(Not run)
Run the code above in your browser using DataLab