# NOT RUN {
library(kernlab)
library(caret)
data(benchmark.data)
example.data=benchmark.data[[1]]
training.samples=sample(1:dim(example.data)[1],floor(0.7*dim(example.data)[1]),replace=FALSE)
C=100
kernels=rep('radial',3)
degree=rep(0,3)
scale=rep(0,3)
sigma=c(0,2^seq(-3:0))
K=kernels.gen(example.data[,1:2], training.samples, kernels, degree, scale, sigma)
K.train=K$K.train
K.test=K$K.test
SEMKL.model=SEMKL.classification(K.train,example.data[training.samples,3], C)
predicted=prediction.Classification(SEMKL.model, K.test, example.data[training.samples,3])
confusionMatrix(factor(predicted$predict, levels=c(-1,1)),
factor(example.data[-training.samples,3],levels=c(-1,1)))
# }
Run the code above in your browser using DataLab