Calculates local morphometric terrain attributes (i.e. slope, aspect, and curvatures). Intended for use with SAGA v 2.1.1+. For older versions use rsaga.local.morphometry()
.
rsaga.slope.asp.curv(
in.dem,
out.slope,
out.aspect,
out.cgene,
out.cprof,
out.cplan,
out.ctang,
out.clong,
out.ccros,
out.cmini,
out.cmaxi,
out.ctota,
out.croto,
method = "poly2zevenbergen",
unit.slope = "radians",
unit.aspect = "radians",
env = rsaga.env(),
...
)
The type of object returned depends on the intern
argument passed to the rsaga.geoprocessor()
. For intern=FALSE
it is a numerical error code (0: success), or otherwise (default) a character vector with the module's console output.
input: digital elevation model as SAGA grid file (.sgrd
)
optional output: slope
optional output: aspect
optional output: general curvature (1 / map units)
optional output: profile curvature (vertical curvature; 1 / map units)
optional output: plan curvature (horizontal curvature; 1 / map units)
optional output: tangential curvature (1 / map units)
optional output: longitudinal curvature (1 / map units) Zevenbergen & Thorne (1987) refer to this as profile curvature
optional output: cross-sectional curvature (1 / map units) Zevenbergen & Thorne (1987) refer to this as the plan curvature
optional output: minimal curvature (1 / map units)
optional output: maximal curvature (1 / map units)
optional output: total curvature (1 / map units)
optional output: flow line curvature (1 / map units)
character algorithm (see References):
0 Maximum Slope - Travis et al. (1975) ("maxslope"
)
1 Max. Triangle Slope - Tarboton (1997) ("maxtriangleslope"
)
2 Least Squares Fit Plane - Costa-Cabral & Burgess (1996) ("lsqfitplane"
)
3 Fit 2nd Degree Polynomial - Evans (1979) ("poly2evans"
)
4 Fit 2nd Degree Polynomial - Heerdegen and Beran (1982) ("poly2heerdegen"
)
5 Fit 2nd Degree Polynomial - Bauer et al. (1985) ("poly2bauer"
)
6 default: Fit 2nd Degree Polynomial - Zevenbergen & Thorne (1987) ("poly2zevenbergen"
)
7 Fit 3rd Degree Polynomial - Haralick (1983) ("poly3haralick"
)
character or numeric (default "radians"
):
0 "radians"
1 "degrees"
2 "percent"
character or numeric (default is 0, or "radians"
):
0 "radians"
1 "degrees"
list, setting up a SAGA geoprocessing environment as created by rsaga.env()
further arguments to rsaga.geoprocessor()
Alexander Brenning and Donovan Bangs (R interface), Olaf Conrad (SAGA module)
Profile and plan curvature calculation (out.cprof
, out.cplan
) changed in SAGA GIS 2.1.1+ compared to earlier versions. See the following thread on sourceforge.net for an ongoing discussion: https://sourceforge.net/p/saga-gis/discussion/354013/thread/e9d07075/#5727
General references:
Jones KH (1998) A comparison of algorithms used to compute hill slope as a property of the DEM. Computers and Geosciences. 24 (4): 315-323.
References on specific methods:
Maximum Slope:
Travis, M.R., Elsner, G.H., Iverson, W.D., Johnson, C.G. (1975): VIEWIT: computation of seen areas, slope, and aspect for land-use planning. USDA F.S. Gen. Tech. Rep. PSW-11/1975, 70 p. Berkeley, California, U.S.A.
Maximum Triangle Slope:
Tarboton, D.G. (1997): A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Ressources Research, 33(2): 309-319.
Least Squares or Best Fit Plane:
Beasley, D.B., Huggins, L.F. (1982): ANSWERS: User's manual. U.S. EPA-905/9-82-001, Chicago, IL, 54 pp.
Costa-Cabral, M., Burges, S.J. (1994): Digital Elevation Model Networks (DEMON): a model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30(6): 1681-1692.
Fit 2nd Degree Polynomial:
Evans, I.S. (1979): An integrated system of terrain analysis and slope mapping. Final Report on grant DA-ERO-591-73-G0040. University of Durham, England.
Bauer, J., Rohdenburg, H., Bork, H.-R. (1985): Ein Digitales Reliefmodell als Vorraussetzung fuer ein deterministisches Modell der Wasser- und Stoff-Fluesse. Landschaftsgenese und Landschaftsoekologie, H. 10, Parameteraufbereitung fuer deterministische Gebiets-Wassermodelle, Grundlagenarbeiten zur Analyse von Agrar-Oekosystemen, eds.: Bork, H.-R., Rohdenburg, H., p. 1-15.
Heerdegen, R.G., Beran, M.A. (1982): Quantifying source areas through land surface curvature. Journal of Hydrology, 57.
Zevenbergen, L.W., Thorne, C.R. (1987): Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12: 47-56.
Fit 3.Degree Polynomial:
Haralick, R.M. (1983): Ridge and valley detection on digital images. Computer Vision, Graphics and Image Processing, 22(1): 28-38.
For a discussion on the calculation of slope by ArcGIS check these links:
https://community.esri.com/?c=93&f=1734&t=239914
https://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?topicname=how_slope_works
rsaga.local.morphometry()
, rsaga.parallel.processing()
, rsaga.geoprocessor()
, rsaga.env()
if (FALSE) {
# Simple slope, aspect, and general curvature in degrees:
rsaga.slope.asp.curv("lican.sgrd", "slope", "aspect", "curvature",
method = "maxslope", unit.slope = "degrees", unit.aspect = "degrees")
# same for ASCII grids (default extension .asc):
rsaga.esri.wrapper(rsaga.slope.asp.curv,
in.dem="lican", out.slope="slope",
out.aspect = "aspect", out.cgene = "curvature",
method="maxslope", unit.slope = "degrees", unit.aspect = "degrees")
}
Run the code above in your browser using DataLab