Symbolic Regression with Random Forest
sym.rf(formula, sym.data, method = c("cm", "crm"), ntree = 500)
a formula, with a response but no interaction terms. If this a a data frame, that is taken as the model frame (see model.frame).
symbolic data table
cm crm
Number of trees to grow. This should not be set to too small a number, to ensure that every input row gets predicted at least a few times.
Lima-Neto, E.A., De Carvalho, F.A.T., (2008). Centre and range method to fitting a linear regression model on symbolic interval data. Computational Statistics and Data Analysis52, 1500-1515
Lima-Neto, E.A., De Carvalho, F.A.T., (2010). Constrained linear regression models for symbolic interval-valued variables. Computational Statistics and Data Analysis 54, 333-347
Lima Neto, E.d.A., de Carvalho, F.d.A.T. Nonlinear regression applied to interval-valued data. Pattern Anal Applic 20, 809–824 (2017). https://doi.org/10.1007/s10044-016-0538-y
Rodriguez, O. (2018). Shrinkage linear regression for symbolic interval-valued variables.Journal MODULAD 2018, vol. Modulad 45, pp.19-38