
Create and train an RBF network with the dynamic decay adjustment (DDA) algorithm. This type of network can only be used for classification. The training typically begins with an empty network, i.e., a network only consisting of input and output units, and adds new units successively. It is a lot easier to use than normal RBF, because it only requires two quite uncritical parameters.
rbfDDA(x, ...)# S3 method for default
rbfDDA(
x,
y,
maxit = 1,
initFunc = "Randomize_Weights",
initFuncParams = c(-0.3, 0.3),
learnFunc = "RBF-DDA",
learnFuncParams = c(0.4, 0.2, 5),
updateFunc = "Topological_Order",
updateFuncParams = c(0),
shufflePatterns = TRUE,
linOut = FALSE,
...
)
an rsnns
object.
a matrix with training inputs for the network
additional function parameters (currently not used)
the corresponding targets values
maximum of iterations to learn
the initialization function to use
the parameters for the initialization function
the learning function to use
the parameters for the learning function
the update function to use
the parameters for the update function
should the patterns be shuffled?
sets the activation function of the output units to linear or logistic
The default functions do not have to be altered. The learning function RBF-DDA
has
three parameters: a positive threshold, and a negative threshold, that controls adding units to
the network, and a parameter for display purposes in the original SNNS. This parameter has
no effect in RSNNS. See p 74 of the original SNNS User Manual for details.
Berthold, M. R. & Diamond, J. (1995), Boosting the Performance of RBF Networks with Dynamic Decay Adjustment, in 'Advances in Neural Information Processing Systems', MIT Press, , pp. 521--528.
Hudak, M. (1993), 'RCE classifiers: theory and practice', Cybernetics and Systems 23(5), 483--515.
Zell, A. et al. (1998), 'SNNS Stuttgart Neural Network Simulator User Manual, Version 4.2', IPVR, University of Stuttgart and WSI, University of Tübingen. http://www.ra.cs.uni-tuebingen.de/SNNS/welcome.html
if (FALSE) demo(iris)
if (FALSE) demo(rbfDDA_spiralsSnnsR)
data(iris)
iris <- iris[sample(1:nrow(iris),length(1:nrow(iris))),1:ncol(iris)]
irisValues <- iris[,1:4]
irisTargets <- decodeClassLabels(iris[,5])
iris <- splitForTrainingAndTest(irisValues, irisTargets, ratio=0.15)
iris <- normTrainingAndTestSet(iris)
model <- rbfDDA(iris$inputsTrain, iris$targetsTrain)
summary(model)
plotIterativeError(model)
Run the code above in your browser using DataLab