A kernel version of the implicitly constrained least squares classifier, see ICLeastSquaresClassifier
.
KernelICLeastSquaresClassifier(X, y, X_u, lambda = 0,
kernel = vanilladot(), x_center = TRUE, scale = TRUE, y_scale = TRUE,
lambda_prior = 0, classprior = 0, method = "LBFGS",
projection = "semisupervised")
matrix; Design matrix for labeled data
factor or integer vector; Label vector
matrix; Design matrix for unlabeled data
numeric; L2 regularization parameter
kernlab::kernel to use
logical; Should the features be centered?
logical; Should the features be normalized? (default: FALSE)
logical; whether the target vector should be centered
numeric; regularization parameter for the posterior deviation from the prior
The classprior used to compare the estimated responsibilities to
character; Estimation method. One of c("LBFGS")
character; The projection used. One of c("supervised","semisupervised")