library(RSSL)
library(ggplot2)
library(dplyr)
# Two class problem
df <- generateCrescentMoon(200)
class_lin <- KernelLeastSquaresClassifier(Class~.,df,
kernel=kernlab::vanilladot(), lambda=1)
class_rbf1 <- KernelLeastSquaresClassifier(Class~.,df,
kernel=kernlab::rbfdot(), lambda=1)
class_rbf5 <- KernelLeastSquaresClassifier(Class~.,df,
kernel=kernlab::rbfdot(5), lambda=1)
class_rbf10 <- KernelLeastSquaresClassifier(Class~.,df,
kernel=kernlab::rbfdot(10), lambda=1)
df %>%
ggplot(aes(x=X1,y=X2,color=Class,shape=Class)) +
geom_point() +
coord_equal() +
stat_classifier(aes(linetype=..classifier..),
classifiers = list("Linear"=class_lin,
"RBF sigma=1"=class_rbf1,
"RBF sigma=5"=class_rbf5,
"RBF sigma=10"=class_rbf10),
color="black")
# Second Example
dmat<-model.matrix(Species~.-1,iris[51:150,])
tvec<-droplevels(iris$Species[51:150])
testdata <- data.frame(tvec,dmat[,1:2])
colnames(testdata)<-c("Class","X1","X2")
precision<-100
xgrid<-seq(min(dmat[,1]),max(dmat[,1]),length.out=precision)
ygrid<-seq(min(dmat[,2]),max(dmat[,2]),length.out=precision)
gridmat <- expand.grid(xgrid,ygrid)
g_kernel<-KernelLeastSquaresClassifier(dmat[,1:2],tvec,
kernel=kernlab::rbfdot(0.01),
lambda=0.000001,scale = TRUE)
plotframe <- cbind(gridmat, decisionvalues(g_kernel,gridmat))
colnames(plotframe)<- c("x","y","Output")
ggplot(plotframe, aes(x=x,y=y)) +
geom_tile(aes(fill = Output)) +
scale_fill_gradient(low="yellow", high="red",limits=c(0,1)) +
geom_point(aes(x=X1,y=X2,shape=Class),data=testdata,size=3) +
stat_classifier(classifiers=list(g_kernel))
# Multiclass problem
dmat<-model.matrix(Species~.-1,iris)
tvec<-iris$Species
testdata <- data.frame(tvec,dmat[,1:2])
colnames(testdata)<-c("Class","X1","X2")
precision<-100
xgrid<-seq(min(dmat[,1]),max(dmat[,1]),length.out=precision)
ygrid<-seq(min(dmat[,2]),max(dmat[,2]),length.out=precision)
gridmat <- expand.grid(xgrid,ygrid)
g_kernel<-KernelLeastSquaresClassifier(dmat[,1:2],tvec,
kernel=kernlab::rbfdot(0.1),lambda=0.00001,
scale = TRUE,x_center=TRUE)
plotframe <- cbind(gridmat,
maxind=apply(decisionvalues(g_kernel,gridmat),1,which.max))
ggplot(plotframe, aes(x=Var1,y=Var2)) +
geom_tile(aes(fill = factor(maxind,labels=levels(tvec)))) +
geom_point(aes(x=X1,y=X2,shape=Class),data=testdata,size=4,alpha=0.5)
Run the code above in your browser using DataLab