Implementation of the Linear Support Vector Classifier. Can be solved in the Dual formulation, which is equivalent to SVM
or the Primal formulation.
LinearSVM(X, y, C = 1, method = "Dual", scale = TRUE, eps = 1e-09,
reltol = 1e-13, maxit = 100)
S4 object of type LinearSVM
matrix; Design matrix for labeled data
factor or integer vector; Label vector
Cost variable
Estimation procedure c("Dual","Primal","BGD")
Whether a z-transform should be applied (default: TRUE)
Small value to ensure positive definiteness of the matrix in QP formulation
relative tolerance using during BFGS optimization
Maximum number of iterations for BFGS optimization
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearTSVM()
,
LogisticLossClassifier
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()