Learn R Programming

RSSL (version 0.9.7)

LogisticLossClassifier: Logistic Loss Classifier

Description

Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.

Usage

LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
  init = NA, x_center = FALSE, ...)

Value

S4 object with the following slots

w

the weight vector of the linear classifier

classnames

vector with names of the classes

Arguments

X

Design matrix, intercept term is added within the function

y

Vector with class assignments

lambda

Regularization parameter used for l2 regularization

intercept

TRUE if an intercept should be added to the model

scale

If TRUE, apply a z-transform to all observations in X and X_u before running the regression

init

Starting parameter vector for gradient descent

x_center

logical; Whether the feature vectors should be centered

...

additional arguments

See Also

Other RSSL classifiers: EMLeastSquaresClassifier, EMLinearDiscriminantClassifier, GRFClassifier, ICLeastSquaresClassifier, ICLinearDiscriminantClassifier, KernelLeastSquaresClassifier, LaplacianKernelLeastSquaresClassifier(), LaplacianSVM, LeastSquaresClassifier, LinearDiscriminantClassifier, LinearSVM, LinearTSVM(), LogisticRegression, MCLinearDiscriminantClassifier, MCNearestMeanClassifier, MCPLDA, MajorityClassClassifier, NearestMeanClassifier, QuadraticDiscriminantClassifier, S4VM, SVM, SelfLearning, TSVM, USMLeastSquaresClassifier, WellSVM, svmlin()