Find the linear classifier which minimizing the logistic loss on the training set, optionally using L2 regularization.
LogisticLossClassifier(X, y, lambda = 0, intercept = TRUE, scale = FALSE,
init = NA, x_center = FALSE, ...)
S4 object with the following slots
the weight vector of the linear classifier
vector with names of the classes
Design matrix, intercept term is added within the function
Vector with class assignments
Regularization parameter used for l2 regularization
TRUE if an intercept should be added to the model
If TRUE, apply a z-transform to all observations in X and X_u before running the regression
Starting parameter vector for gradient descent
logical; Whether the feature vectors should be centered
additional arguments
Other RSSL classifiers:
EMLeastSquaresClassifier
,
EMLinearDiscriminantClassifier
,
GRFClassifier
,
ICLeastSquaresClassifier
,
ICLinearDiscriminantClassifier
,
KernelLeastSquaresClassifier
,
LaplacianKernelLeastSquaresClassifier()
,
LaplacianSVM
,
LeastSquaresClassifier
,
LinearDiscriminantClassifier
,
LinearSVM
,
LinearTSVM()
,
LogisticRegression
,
MCLinearDiscriminantClassifier
,
MCNearestMeanClassifier
,
MCPLDA
,
MajorityClassClassifier
,
NearestMeanClassifier
,
QuadraticDiscriminantClassifier
,
S4VM
,
SVM
,
SelfLearning
,
TSVM
,
USMLeastSquaresClassifier
,
WellSVM
,
svmlin()