Learn R Programming

RSSL (version 0.9.7)

loss: Loss of a classifier or regression function

Description

Hinge loss on new objects of a trained LinearSVM

Hinge loss on new objects of a trained SVM

Usage

loss(object, ...)

# S4 method for LeastSquaresClassifier loss(object, newdata, y = NULL, ...)

# S4 method for NormalBasedClassifier loss(object, newdata, y = NULL)

# S4 method for LogisticRegression loss(object, newdata, y = NULL)

# S4 method for KernelLeastSquaresClassifier loss(object, newdata, y = NULL, ...)

# S4 method for LinearSVM loss(object, newdata, y = NULL)

# S4 method for LogisticLossClassifier loss(object, newdata, y = NULL, ...)

# S4 method for MajorityClassClassifier loss(object, newdata, y = NULL)

# S4 method for SVM loss(object, newdata, y = NULL)

# S4 method for SelfLearning loss(object, newdata, y = NULL, ...)

# S4 method for USMLeastSquaresClassifier loss(object, newdata, y = NULL, ...)

# S4 method for svmlinClassifier loss(object, newdata, y = NULL)

Value

numeric; the total loss on the test data

Arguments

object

Classifier; Trained Classifier

...

additional parameters

newdata

data.frame; object with test data

y

factor; True classes of the test data