Learn R Programming

RStoolbox (version 0.2.6)

spectralIndices: Spectral Indices

Description

Calculate a suite of multispectral indices such as NDVI, SAVI etc. in an efficient way.

Usage

spectralIndices(img, blue = NULL, green = NULL, red = NULL,
  nir = NULL, redEdge1 = NULL, redEdge2 = NULL, redEdge3 = NULL,
  swir1 = NULL, swir2 = NULL, swir3 = NULL, scaleFactor = 1,
  skipRefCheck = FALSE, indices = NULL, index = NULL,
  maskLayer = NULL, maskValue = 1, coefs = list(L = 0.5, G = 2.5,
  L_evi = 1, C1 = 6, C2 = 7.5, s = 1, swir2ccc = NULL, swir2coc = NULL),
  ...)

Arguments

img

Raster* object. Typically remote sensing imagery, which is to be classified.

blue

Character or integer. Blue band.

green

Character or integer. Green band.

red

Character or integer. Red band.

nir

Character or integer. Near-infrared band (700-1100nm).

redEdge1

Character or integer. Red-edge band (705nm)

redEdge2

Character or integer. Red-edge band (740nm)

redEdge3

Character or integer. Red-edge band (783nm)

swir1

not used

swir2

Character or integer. Short-wave-infrared band (1400-1800nm).

swir3

Character or integer. Short-wave-infrared band (2000-2500nm).

scaleFactor

Numeric. Scale factor for the conversion of scaled reflectances to [0,1] value range (applied as reflectance/scaleFactor) Neccesary for calculating EVI/EVI2 with scaled reflectance values.

skipRefCheck

Logical. When EVI/EVI2 is to be calculated there is a rough heuristic check, whether the data are inside [0,1]+/-0.5 (after applying a potential scaleFactor). If there are invalid reflectances, e.g. clouds with reflectance > 1 this check will result in a false positive and skip EVI calculation. Use this argument to skip this check in such cases *iff* you are sure the data and scaleFactor are valid.

indices

Character. One or more spectral indices to calculate (see Details). By default (NULL) all implemented indices given the spectral bands which are provided will be calculated.

index

Character. Alias for indices.

maskLayer

RasterLayer containing a mask, e.g. clouds, for which pixels are set to NA. Alternatively a layername or -number can be provided if the mask is part of img.

maskValue

Integer. Pixel value in maskLayer which should be masked in output, i.e. will be set to NA in all calculated indices.

coefs

List of coefficients (see Details).

...

further arguments such as filename etc. passed to writeRaster

Value

RasterBrick or a RasterLayer if length(indices) == 1

Details

spectralIndices calculates all indices in one go in C++, which is more efficient than calculating each index separately (for large rasters). By default all indices which can be calculated given the specified indices will be calculated. If you don't want all indices, use the indices argument to specify exactly which indices are to be calculated. See the table bellow for index names and required bands.

Index values outside the valid value ranges (if such a range exists) will be set to NA. For example a pixel with NDVI > 1 will be set to NA.

Index Description Source Bands Formula
CLG Green-band Chlorophyll Index Gitelson2003 redEdge3, green \(redEdge3/green - 1\)
CLRE Red-edge-band Chlorophyll Index Gitelson2003 redEdge3, redEdge1 \(redEdge3/redEdge1 - 1\)
CTVI Corrected Transformed Vegetation Index Perry1984 red, nir \((NDVI + 0.5)/sqrt(abs(NDVI + 0.5))\)
DVI Difference Vegetation Index Richardson1977 red, nir \(s * nir - red\)
EVI Enhanced Vegetation Index Huete1999 red, nir, blue \(G * ((nir - red)/(nir + C1 * red - C2 * blue + L_evi))\)
EVI2 Two-band Enhanced Vegetation Index Jiang 2008 red, nir \(G * (nir - red)/(nir + 2.4 * red + 1)\)
GEMI Global Environmental Monitoring Index Pinty1992 red, nir \((((nir^2 - red^2) * 2 + (nir * 1.5) + (red * 0.5))/(nir + red + 0.5)) * (1 - ((((nir^2 - red^2) * 2 + (nir * 1.5) + (red * 0.5))/(nir + red + 0.5)) * 0.25)) - ((red - 0.125)/(1 - red))\)
GNDVI Green Normalised Difference Vegetation Index Gitelson1998 green, nir \((nir - green)/(nir + green)\)
MCARI Modified Chlorophyll Absorption Ratio Index Daughtery2000 green, red, redEdge1 \(((redEdge1 - red) - (redEdge1 - green)) * (redEdge1/red)\)
MNDWI Modified Normalised Difference Water Index Xu2006 green, swir2 \((green - swir2)/(green + swir2)\)
MSAVI Modified Soil Adjusted Vegetation Index Qi1994 red, nir \(nir + 0.5 - (0.5 * sqrt((2 * nir + 1)^2 - 8 * (nir - (2 * red))))\)
MSAVI2 Modified Soil Adjusted Vegetation Index 2 Qi1994 red, nir \((2 * (nir + 1) - sqrt((2 * nir + 1)^2 - 8 * (nir - red)))/2\)
MTCI MERIS Terrestrial Chlorophyll Index DashAndCurran2004 red, redEdge1, redEdge2 \((redEdge2 - redEdge1)/(redEdge1 - red)\)
NBRI Normalised Burn Ratio Index Garcia1991 nir, swir3 \((nir - swir3)/(nir + swir3)\)
NDREI1 Normalised Difference Red Edge Index 1 GitelsonAndMerzlyak1994 redEdge2, redEdge1 \((redEdge2 - redEdge1)/(redEdge2 + redEdge1)\)
NDREI2 Normalised Difference Red Edge Index 2 Barnes2000 redEdge3, redEdge1 \((redEdge3 - redEdge1)/(redEdge3 + redEdge1)\)
NDVI Normalised Difference Vegetation Index Rouse1974 red, nir \((nir - red)/(nir + red)\)
NDVIC Corrected Normalised Difference Vegetation Index Nemani1993 red, nir, swir2 \((nir - red)/(nir + red) * (1 - ((swir2 - swir2ccc)/(swir2coc - swir2ccc)))\)
NDWI Normalised Difference Water Index McFeeters1996 green, nir \((green - nir)/(green + nir)\)
NDWI2 Normalised Difference Water Index Gao1996 nir, swir2 \((nir - swir2)/(nir + swir2)\)
NRVI Normalised Ratio Vegetation Index Baret1991 red, nir \((red/nir - 1)/(red/nir + 1)\)
REIP Red Edge Inflection Point GuyotAndBarnet1988 red, redEdge1, redEdge2, redEdge3 \(0.705 + 0.35 * ((red + redEdge3)/(2 - redEdge1))/(redEdge2 - redEdge1)\)
RVI Ratio Vegetation Index red, nir \(red/nir\)
SATVI Soil Adjusted Total Vegetation Index Marsett2006 red, swir2, swir3 \((swir2 - red)/(swir2 + red + L) * (1 + L) - (swir3/2)\)
SAVI Soil Adjusted Vegetation Index Huete1988 red, nir \((nir - red) * (1 + L)/(nir + red + L)\)
SLAVI Specific Leaf Area Vegetation Index Lymburger2000 red, nir, swir2 \(nir/(red + swir2)\)
SR Simple Ratio Vegetation Index Birth1968 red, nir \(nir/red\)
TTVI Thiam's Transformed Vegetation Index Thiam1997 red, nir \(sqrt(abs((nir - red)/(nir + red) + 0.5))\)
TVI Transformed Vegetation Index Deering1975 red, nir \(sqrt((nir - red)/(nir + red) + 0.5)\)

Some indices require additional parameters, such as the slope of the soil line which are specified via a list to the coefs argument. Although the defaults are sensible values, values like the soil brightnes factor L for SAVI should be adapted depending on the characteristics of the scene. The coefficients are:

Coefficient Description Affected Indices
s slope of the soil line DVI, WDVI
L_evi, C1, C2, G various EVI
L soil brightness factor SAVI, SATVI
swir2ccc minimum swir2 value (completely closed forest canopy) NDVIC
swir2coc maximum swir2 value (completely open canopy) NDVIC

The wavelength band names are defined following Schowengertd 2007, p10. The last column shows exemplarily which Landsat 5 TM bands correspond to which wavelength range definition.

Band Description Wavl_min Wavl_max Landsat5_Band Sentinel2_Band vis
visible 400 680 1,2,3 2,3,4 red-edge1 red-edge1
680 720 - 5 red-edge2 red-edge2 720
760 - 6 red-edge3 red-edge3 760 800
- 7 nir near infra-red 800 1100 4
8/8a swir1 short-wave infra-red 1100 1351 - 9,10
swir2 short-wave infra-red 1400 1800 5 11 swir3
short-wave infra-red 2000 2500 7 12 mir1 mid-wave infra-red
3000 4000 - - mir2 mid-wave infra-red 45000
5000 - - tir1 thermal infra-red 8000 9500
- - Band Description Wavl_min Wavl_max Landsat5_Band

Examples

Run this code
# NOT RUN {
library(ggplot2)
library(raster)
data(lsat)

## Calculate NDVI
ndvi <- spectralIndices(lsat, red = "B3_dn", nir = "B4_dn", indices = "NDVI")
ndvi
ggR(ndvi, geom_raster = TRUE) +
        scale_fill_gradientn(colours = c("black", "white")) 

# }
# NOT RUN {
## Calculate all possible indices, given the provided bands 
## Convert DNs to reflectance (required to calculate EVI and EVI2)
mtlFile  <- system.file("external/landsat/LT52240631988227CUB02_MTL.txt", package="RStoolbox")
lsat_ref <- radCor(lsat, mtlFile, method = "apref")

SI <- spectralIndices(lsat_ref, red = "B3_tre", nir = "B4_tre")
plot(SI)
# }

Run the code above in your browser using DataLab