Learn R Programming

RStoolbox (version 1.0.0)

validateMap: Map accuracy assessment

Description

validate a map from a classification or regression model. This can be useful to update the accuracy assessment after filtering, e.g. for a minimum mapping unit.

Usage

validateMap(
  map,
  valData,
  responseCol,
  nSamplesV = 500,
  mode = "classification",
  classMapping = NULL
)

Value

Returns a structured list includng the preformance and confusion-matrix of your then validated input data

Arguments

map

SpatRaster. The classified map.

valData

sf object with validation data (POLYGONs or POINTs).

responseCol

Character. Column containing the validation data in attribute table of valData.

nSamplesV

Integer. Number of pixels to sample for validation (only applies to polygons).

mode

Character. Either 'classification' or 'regression'.

classMapping

optional data.frame with columns 'class' and 'classID' defining the mapping from raster integers to class names.

Examples

Run this code
library(caret)
library(terra)

## Training data
poly     <- readRDS(system.file("external/trainingPolygons_lsat.rds", package="RStoolbox"))

## Split training data in training and validation set (50%-50%)
splitIn   <- createDataPartition(poly$class, p = .5)[[1]]
train <- poly[splitIn,]
val   <- poly[-splitIn,]

## Classify (deliberately poorly)
sc <- superClass(lsat, trainData = train, responseCol = "class", nSamples = 50, model = "mlc")

## Polish map with majority filter

polishedMap <- focal(sc$map, matrix(1,3,3), fun = modal) 

## Validation
## Before filtering
val0 <- validateMap(sc$map, valData = val, responseCol = "class",
                            classMapping = sc$classMapping)
## After filtering
val1 <- validateMap(polishedMap, valData = val, responseCol = "class",
                             classMapping = sc$classMapping)

Run the code above in your browser using DataLab