n.c.freecalc: Freecalc optimum sample size and cut-point number
of positives
Description
Calculates optimum sample size and cut-point number of positives
to achieve specified population sensitivity, for
given population size and other parameters, using freecalc algorithm,
all paramaters must be scalars
Usage
n.c.freecalc(N, sep = 0.95, c = 1, se, sp = 1, pstar,
minSpH = 0.95)
Arguments
N
population size
sep
target population sensitivity
c
The maximum allowed cut-point number of positives to classify a cluster
as positive, default=1, if positives < c result is negative, >= c is positive
se
test unit sensitivity
sp
test unit specificity, default=1
pstar
design prevalence as a proportion or integer (number of infected units)
minSpH
minimium desired population specificity
Value
a list of 3 elements, a dataframe with 1 row and six columns for
the recommended sample size and corresponding values for population sensitivity (SeP),
population specificity (SpP), N, c and pstar, a vector of SeP values
and a vector of SpP values, for n = 1:N
# NOT RUN {# examples for n.c.hpn.c.freecalc(120,0.95,c=5,se=0.9,sp=0.99,pstar=0.1, minSpH=0.9)[[1]]
n.c.freecalc(65,0.95,c=5,se=0.95,sp=0.99,pstar=0.05, minSpH=0.9)
# }