- coerce
signature(from = "EuclRandVariable", to = "EuclRandVarList")
:
create a "EuclRandVarList"
object from a Euclidean random variable.
- coerce
signature(from = "EuclRandMatrix", to = "EuclRandVarList")
:
create a "EuclRandVarList"
object from a Euclidean random matrix.
- numberOfMaps
signature(object = "EuclRandVarList")
:
number of functions contained in the slots Map
of
the members of object
.
- dimension
signature(object = "EuclRandVarList")
:
dimension of the Euclidean random variable.
- evalRandVar
signature(RandVar = "EuclRandVarList", x = "numeric")
:
evaluate the elements of RandVar
at x
.
- evalRandVar
signature(RandVar = "EuclRandVarList", x = "matrix")
:
evaluate the elements of RandVar
at rows of x
.
- evalRandVar
signature(RandVar = "EuclRandVarList", x = "numeric", distr = "Distribution")
:
evaluate the elements of RandVar
at x
assuming
a probability space with distribution distr
. In case x
does not lie in the support of distr
NA
is returned.
- evalRandVar
signature(RandVar = "EuclRandVarList", x = "matrix", distr = "Distribution")
:
evaluate the elements of RandVar
at rows of x
assuming a probability space with distribution distr
. For those
rows of x
which do not lie in the support of distr
NA
is returned.
- imageDistr
signature(RandVar = "EuclRandVarList", distr = "Distribution")
:
image distribution of distr
under RandVar
. Returns
an object of class "DistrList"
.
- show
signature(object = "EuclRandVarList")
- t
signature(x = "EuclRandVarList")
:
returns an object of class "EuclRandVarList"
where the
rhe results of the functions in the slots Map
of the members of
x
are transposed.
- %m%
signature(x = "EuclRandVarList", y = "EuclRandVarList")
:
matrix multiplication for objects of class "EuclRandVarList"
.
Generates an object of class "EuclRandVarList"
.
- %*%
signature(x = "matrix", y = "EuclRandVarList")
:
matrix multiplication of x
and y
. Generates
an object of class "EuclRandMatrix"
.
- %*%
signature(x = "EuclRandVarList", y = "matrix")
:
matrix multiplication of x
and y
. Generates
an object of class "EuclRandMatrix"
.
- Arith
signature(e1 = "numeric", e2 = "EuclRandVarList")
:
Given a numeric vector e1
, a list of Euclidean random variables e2
and an arithmetic operator op
, the list of Euclidean random variables
e1 op e2
is returned.
- Arith
signature(e1 = "EuclRandVarList", e2 = "numeric")
:
Given a numeric vector e2
, a list of Euclidean random variables e1
and an arithmetic operator op
, the list of Euclidean random variables
e1 op e2
is returned.
- Arith
signature(e1 = "EuclRandVarList", e2 = "EuclRandVarList")
:
Given two lists of Euclidean random variables e1
, e2
and an
arithmetic operator op
, the list of Euclidean random variables
e1 op e2
is returned.
- Math
signature(x = "EuclRandVarList")
:
Given a "Math"
group generic fct
, the list of Euclidean random
variables fct(x)
is returned.
- E
signature(object = "UnivariateDistribution", fun = "EuclRandVarList", cond = "missing")
:
expectation of fun
under univariate distributions.
- E
signature(object = "AbscontDistribution", fun = "EuclRandVarList", cond = "missing")
:
expectation of fun
under absolutely continuous univariate distributions.
- E
signature(object = "DiscreteDistribution", fun = "EuclRandVarList", cond = "missing")
:
expectation of fun
under discrete univariate distributions.
- E
signature(object = "MultivariateDistribution", fun = "EuclRandVarList", cond = "missing")
:
expectation of fun
under multivariate distributions.
- E
signature(object = "DiscreteMVDistribution", fun = "EuclRandVarList", cond = "missing")
:
expectation of fun
under discrete multivariate distributions.
- E
signature(object = "UnivariateCondDistribution", fun = "EuclRandVarList", cond = "numeric")
:
expectation of fun
under conditional univariate distributions.
- E
signature(object = "AbscontCondDistribution", fun = "EuclRandVarList", cond = "numeric")
:
expectation of fun
under absolutely continuous conditional univariate distributions.
- E
signature(object = "DiscreteCondDistribution", fun = "EuclRandVarList", cond = "numeric")
:
expectation of fun
under discrete conditional univariate distributions.