# NOT RUN {
library(orthopolynom)
library(polynom)
library(tmvtnorm)
library(ks)
library(sfsmisc)
library(snowfall)
library(fourierin)
library(rdetools)
library(statmod)
library(RCEIM)
library(robustbase)
library(VGAM)
library(RandomCoefficients)
# beta (output) Grid
M=100
limit =7.5
b_grid <- seq(-limit ,limit ,length.out=M)
a = limit
up =1.5
down = -up
und_beta <- a
x2 <- b_grid
x.grid <- as.matrix(expand.grid(b_grid ,b_grid ))
# DATA generating process
d = 1
Mean_mu1 = c(-2,- 3)
Mean_mu2= c(3, 0)
Sigma= diag(2, 2)
Sigma[1,2] = 1
Sigma[2,1] = 1
limit2 = 6
# }
# NOT RUN {
N <- 1000
xi1 <- rtmvnorm(N, mean = Mean_mu1, sigma=Sigma, lower=c( -limit2,-limit2), upper=c(limit2,limit2))
xi2 <- rtmvnorm(N, mean = Mean_mu2, sigma=Sigma, lower=c( -limit2,-limit2), upper=c(limit2,limit2))
theta = runif(N, -1 , 1)
beta <- 1*(theta >=0) * xi1 + 1*(theta <0) * xi2
X <- rtmvnorm(N, mean = c(0), sigma=2.5, lower=c( down), upper=c(up))
X_t <- cbind(matrix(1, N,1),X)
Y <-rowSums(beta*X_t)
out <- rc_estim( X,Y,b_grid,b_grid,nbCores = 1, M_T = 60)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab