The corresponding function $C$ (which is not necessarily a covariance function, see details) only depends on the distance $r$ between two points in $d$-dimensional space and is given by
$$C(r)=\phi(r), 0\le r \le d$$ $$C(r) = b_0 ((dR)^a - r^a)^{2 a}, d \le r \le dR$$ $$C(r) = 0, dR \le r$$ The parameters $R$ and $b_0$ are chosen internally such that $C$ is a smooth function.
RMcutoff(phi, diameter, a, var, scale, Aniso, proj)
RFgetModelNames(type="positive definite",
domain="single variable", isotropy="isotropy", vdim=1)
)
which is valid in dimension fulldim
.## For examples see the help page of 'RFsimulateAdvanced' ##
RFoptions(seed=NA)
Run the code above in your browser using DataLab