RMdewijsian: Generalized DeWijsian Variogram Model
Description
RMdewijsian is an intrinsically stationary isotropic variogram model.
The corresponding centered semi-variogram only depends on the distance
$r \ge 0$ between two points and is given by
$$\gamma(r) = \log(r^{\alpha}+1)$$
where $\alpha \in (0,2]$.
Usage
RMdewijsian(alpha, var, scale, Aniso, proj)
Arguments
alpha
a numerical value; should be in the interval (0,2]
to provide a valid variogram for a random field of any dimension.
var,scale,Aniso,proj
optional parameters; same meaning for any
RMmodel. If not passed, the above
variogram remains unmodified.
The parameter $\alpha$ must satisfy $\alpha \in (0,2]$.
Originally, the logarithmic model $\gamma(r) = \log(r)$ was named
after de Wijs and reflects a principle of similarity (cf. Chiles,
J.-P. and Delfiner, P. (1999), p. 90).
But note that $\gamma(r) = \log(r)$ is not a valid variogram
($\gamma(0)$ does not vanish)
whereas $\gamma(r) = \log(r^{\alpha}+1)$ is valid
(cf. Wackernagel, H. (2003), p. 336).
References
Chiles, J.-P. and Delfiner, P. (1999)Geostatistics. Modeling Spatial Uncertainty.New York: Wiley.
Wackernagel, H. (2003)Multivariate Geostatistics.Berlin:
Springer, 3nd edition.
% \item Martin's Toledo-Chapter: Construction of covariance functions
% and unconditional simulation of random fields, Example 7