Learn R Programming

RandomFields (version 3.0.10)

RMstp: Single temporal process

Description

RMstp is a univariate covariance model which depends on a submodel $\phi$ wich is a normal mixture model. The covariance is given by $$C(x,y) = |S_x|^{1/4} |S_y|^{1/4} |A|^{-1/2} \phi(Q(x,y)^{1/2})$$ where $$Q(x,y) = c^2 - m^2 + h^t (S_x + 2(m + c)M) A^{-1} (A_y + 2 (m-c)M)h,$$ $$c = -z^t h + \xi_2(x) - \xi_2(y),$$ $$A = S_x + S_y + 4 M h h^t M$$ $$m = h^t M h$$ $$h = S(x) - S(y)$$

Usage

RMstp(xi2, phi, S, z, M, var, scale, Aniso, proj)

Arguments

xi2
arbitrary univariate function on $R^d$
phi
an RMmodel that is a normal mixture model
S
arbitrary d-variate function on $R^d$
z
arbitrary vector, $z \in R^d$
M
an arbitrary $d \times d$ matrix
var,scale,Aniso,proj
optional parameters; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

Details

See Schlather (2008) formula (13). The model allows for mimicking cyclonic behaviour.

References

  • Schlather, M. (2008) On some covariance models based on normal scale mixtures.Submitted

See Also

RMmodel, RFsimulate, RFfit.

Examples

Run this code
RFoptions(seed=0)
model <- RMstp(xi2 = RMrotat(phi= -2 * pi, speed=1),
               phi = RMwhittle(nu = 1),
               M=matrix(nc=3, rep(0, 9)),
               S=RMetaxxa(E=rep(1, 3), alpha = -2 * pi,
                          A=t(matrix(nc=3, c(2, 0, 0, 1, 1 , 0, 0, 0, 0))))
              )
x <- seq(0, 10, if (interactive()) 0.7 else 5) 
plot(RFsimulate(model, x=x, y=x, z=x))
RFoptions(seed=NA)

Run the code above in your browser using DataLab