Learn R Programming

RandomFields (version 3.0.10)

plot-method: Methods for function plot in package RandomFields

Description

Plot methods are implemented for simulated random fields (objects of class RFsp), explicit covariance models (objects of class RMmodel), empirical variograms (objects of class RFempVariog) and fitted models (objects of class RFfit).

Usage

## S3 method for class 'RFspatialGridDataFrame,missing':
plot(x, 
 MARGIN=c(1,2), MARGIN.slices=NULL,
 n.slices = if (!missing(MARGIN.slices) &&
 !is.null(MARGIN.slices)) 10 else 1,
 nmax=6, 
 plot.variance = (!is.null(x@.RFparams$has.variance) &&
 x@.RFparams$has.variance), select.variables, zlim, legend=TRUE, ...)

## S3 method for class 'RFspatialPointsDataFrame,missing': plot(x, y, MARGIN=c(1,2), nmax=6, plot.variance = (!is.null(x@.RFparams$has.variance) && x@.RFparams$has.variance), select.variables, zlim, legend=TRUE, ...)

## S3 method for class 'RFgridDataFrame,missing': plot(x, y, nmax=6, plot.variance = (!is.null(x@.RFparams$has.variance) && x@.RFparams$has.variance), ...)

## S3 method for class 'RFpointsDataFrame,missing': plot(x, y, nmax=6, sorted=FALSE, plot.variance = (!is.null(x@.RFparams$has.variance) && x@.RFparams$has.variance), ...)

## S3 method for class 'RFempVariog,missing': plot(x, y, nmax.phi=6, nmax.theta=3, nmax.T=3, plot.nbin=TRUE, plot.sd=FALSE, model=NULL, variogram=TRUE, ...)

## S3 method for class 'RFfit,missing': plot(x, y, fit.method="ml", nmax.phi=6, nmax.theta=3, nmax.T=3, plot.nbin=TRUE, plot.sd=FALSE, model=NULL, variogram = TRUE, ...)

## S3 method for class 'RMmodel,missing': plot(x, y, dim=1, n.points=200, fct.type=NULL, MARGIN, fixed.MARGIN, ...)

## S3 method for class 'RMmodel': points(x, y, n.points=200, fct.type=NULL, ...)

## S3 method for class 'RMmodel': lines(x, y, n.points=200, fct.type=NULL, ...)

Arguments

x
object of class RFsp or RFempVario or RFfit or
y
ignored in most methods
MARGIN
vector of two; two integer values giving the coordinate dimensions w.r.t. which the field or the covariance model is to be plotted; in all other directions, the first index is taken
MARGIN.slices
integer value; if $[space-time-dimension>2]$, MARGIN.slices can specify a third dimension w.r.t. which a sequence of slices is plotted
fixed.MARGIN
only for class(x)=="RMmodel" and if dim > 2; a vector of length dim-2 with distance values for the coordinates that are not displayed
n.slices
integer value; the number of slices to be plotted; if n.slices>1, nmax is set to 1
nmax
the maximal number of the x@.RFparams$n iid copies of the field that are to be plotted
sorted
logical; indicates whether the point locations are in increasing order
...
arguments to be passed to methods; mainly graphical parameters; internally, ... are passed to image and plot.default, respectively; if, by default, multiple colors, xlabs or ylabs are used, also vectors of suitabl
fit.method
character; only for class(x)=="RFfit"; a vector of slot names for which the fitted covariance or variogram model is to be plotted; should be a subset of slotNames(x) for which the corresponding slots are of class "RMmode
nmax.phi
integer; only for class(x)=="RFempVario"; the maximal number of bins of angle phi that are to be plotted
nmax.theta
integer; only for class(x)=="RFempVario"; the maximal number of bins of angle theta that are to be plotted
nmax.T
integer; only for class(x)=="RFempVario"; the maximal number of different time bins that are to be plotted
plot.nbin
logical; only for class(x)=="RFempVario"; indicates whether the number of pairs per bin are to be plotted
plot.sd
logical; only for class(x)=="RFempVario"; indicates whether the calculated standard deviation (x@sd) is to be plotted (in form of arrows of length +-1*sd)
variogram
logical; This parameter should currently not be set by the user. If TRUE then the empirical variogram is plotted, else an estimate for the covariance function
dim
must equal 1 or 2; only for class(x)=="RMmodel"; the covariance function and the variogram are plotted as a function of $\R^\code{dim}$.
n.points
integer; only for class(x)=="RMmodel"; the number of points at which the model evaluated (in each dimension); defaults to 200
fct.type
character; only for class(x)=="RMmodel"; must equal NULL, "Cov" or "Variogram"; controls whether the covariance (fct.type="Cov") or the variogram (fct.type="Variogram") is pl
model
object of class RMmodel; only for class(x)=="RFempVario" or class(x)=="RFfit"; a list of covarianve or variogram models that are to be plotted into the same
plot.variance
logical, whether variances should be plotted if available
select.variables
vector of integers or list of vectors. The parameter is only of interest for multivariate models. Here, length(select.variables) gives the number of pictures shown (excuding the plot for the variances, if applicable). If select.vari
legend
logical, whether a legend should be plotted
zlim
vector of length 2 with the usual meaning. In case of multivariate random fields, zlim can also be a character wih the value joint indicating that all plotted compoments shall have the same zlim OR a matrix with two rows,

Examples

Run this code
RFoptions(seed=0)

## define the model:
 model <- RMtrend(mean=0.5) + # mean
 RMstable(alpha=1, var=4, scale=10) +
 # see help("RMstable")
 # for additional parameters
 RMnugget(var=1) # nugget

 #############################################################
 ## Plot of covariance structure

 plot(model, xlim=c(0, 30))
 plot(model, xlim=c(0, 30), fct.type="Variogram")
 plot(model, xlim=c(-10, 20), fct.type="Variogram", dim=2)

 #############################################################
 ## Plot of simulation results

 ## define the locations:
 from <- 0
 step <- .1 
 len <- if (interactive()) 50 else 5 ## nicer, but also time consuming if len <- 200
 x1D <- GridTopology(from, step, len)
 x2D <- GridTopology(rep(from, 2), rep(step, 2), rep(len, 2))
 x3D <- GridTopology(rep(from, 3), rep(step, 3), rep(len, 3))

 ## 1-dimensional
 sim1D <- RFsimulate(model = model, x=x1D, n=6) 
 plot(sim1D, nmax=4)

 ## 2-dimensional
 sim2D <- RFsimulate(model = model, x=x2D, n=6) 
 plot(sim2D, nmax=4)
 plot(sim2D, nmax=4, col=terrain.colors(64),
 main="My simulation", xlab="my_xlab")

 ## 3-dimensional
 model <- RMmatern(nu=1.5, var=4, scale=2)
 sim3D <- RFsimulate(model = model, x=x3D) 
 plot(sim3D, MARGIN=c(2,3), MARGIN.slices=1, n.slices=4)

 
 #############################################################
 ## empirical variogram plots

 x <- c(0,.05,200)
 bin <- seq(from=0, by=.2, to=3)

 model <- RMexp()
 X <- RFsimulate(x=cbind(x), model=model, grid=TRUE)
 ev1 <- RFempiricalvariogram(data=X, bin=bin)
 plot(ev1)

 model <- RMexp(Aniso = cbind(c(10,0), c(0,1)))
 X <- RFsimulate(x=cbind(x,x), model=model, grid=TRUE)
 ev2 <- RFempiricalvariogram(data=X, bin=bin, phi=3)
 plot(ev2, model=list(Exp = model))


 #############################################################
 ## plot Fitting results
 x <- c(0,.1,20)
 model <- RMexp(Aniso = cbind(c(10,0), c(0,1)))
 X <- RFsimulate(x=cbind(x,x), model=model, grid=TRUE)
 fit <- RFfit(~RMexp(Aniso=matrix(nc=2, nr=2, NA)), data=X, fit.nphi = 2)
 plot(fit) 


 #############################################################
 ## plot Kriging results 
 
 model <- RMwhittle(nu=1.2, scale=2)
 x <- runif(200, max=step*len/2) 
 y <- runif(200, max=step*len/2) # 200 points in 2 dimensional space
 sim <- RFsimulate(model = model, x=x, y=y)

 interpolate <- RFinterpolate(model=model, x=x2D, data=sim)
 plot(interpolate)
 plot(interpolate, sim)


#############################################################
## plotting vector-valued results
model <- RMdivfree(RMgauss(), scale=4)
x <- y <- seq(-10,10, if (interactive()) 0.5 else 5)
simulated <- RFsimulate(model = model, x=x, y=y, grid=TRUE, n=1)
plot(simulated)
plot(simulated, select.variables=list(1, 1:3, 4))




#############################################################
## options for the zlim parameter
model <- RMdelay(RMstable(alpha=1.9, scale=2), s=c(0, 4)) +
 RMdelay(RMstable(alpha=1.9, scale=2), s=c(4, 0))
simu <- RFsimulate(model, x, y, grid=TRUE)

plot(simu, zlim=list(data=cbind(c(-6,2), c(-2,1)), var=c(5,6)))
plot(simu, zlim=cbind(c(-6,2), c(-2,1)))
plot(simu, zlim=c(-6,2))
plot(simu, zlim="joint")
RFoptions(seed=NA)

Run the code above in your browser using DataLab