RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
RFoptions(modus_operandi="sloppy")
n <- if (interactive()) 100 else 5
#########################################################
## simulate some data first
points <- if (interactive()) 100 else 40
x <- runif(points, 0, 3)
y <- runif(points, 0, 3) ## random points in square [0, 3]^2
model <- RMgencauchy(alpha=1, beta=2)
d <- RFsimulate(model, x=x, y=y, grid=FALSE, n=n) #1000
#########################################################
## estimation; 'NA' means: "to be estimated"
estmodel <- RMgencauchy(var=NA, scale=NA, alpha=NA, beta=2) +
RMtrend(mean=NA)
RFcrossvalidate(estmodel, data=d, spC=FALSE)
\dontrun{
#########################################################
## Estimation with fixed sill (variance + nugget equals a
## given constant)
estmodel <- RMgencauchy(var=NA, scale=NA, alpha=NA, beta=NA) +
RMnugget(var=NA) + RMtrend(mean=NA)
RFcrossvalidate(estmodel, data=d, fit.sill=1, fit.optim_var_elimination="try",
spC=FALSE)
#########################################################
## estimation in a anisotropic framework
x <- y <- (1:3)/4
model <- RMexp(Aniso=matrix(nc=2, c(4,2,-2,1)), var=1.5)
z <- RFsimulate(model, x=x, y=y, grid=TRUE, n=n, spC=TRUE)
estmodel <- RMexp(Aniso=matrix(nc=2, c(NA,NA,-2,1)), var=NA) +
RMtrend(mean=NA)
RFcrossvalidate(estmodel, data=z, fit.nphi=20, spC=FALSE)
}
\dontrun{
#########################################################
## estimation of coupled parameters (alpha = beta, here)
# source("RandomFields/tests/source.R")
f <- function(param) param[c(1,2,3,3,4)]
RFcrossvalidate(estmodel, data=d, transform=list(), spC=FALSE)# shows positions of the NAs
RFcrossvalidate(estmodel, data=d, spC=FALSE,
transform=list(c(rep(TRUE, 3), FALSE, TRUE), f))
########################################################
## estimation of anisotropy matrix ##
x <- seq(0, 5, 1.5)
model <- RMexp(var=1, scale=1)
z <- RFsimulate(model, x, x, x, grid=TRUE, n=n, spC=TRUE)
estmodel <- RMexp(var=NA, Aniso=diag(rep(NA, 3))) +
RMnugget(var=NA) + RMtrend(mean=NA)
RFcrossvalidate(estmodel, data=z, spC=FALSE)
########################################################
## estimation of anisotropy matrix where the two first##
## diagonal elements are identical ##
RFcrossvalidate(estmodel, data=z, transform=list(), spC=FALSE)
## shows the positions of the NAs
trafo <- function(variab) { variab[c(1, 2, 2, 3, 4)] }
RFcrossvalidate(estmodel, data=z, critical=0, spC=FALSE,
transform=list(c(TRUE, TRUE, FALSE, TRUE, TRUE),
trafo))
########################################################
## estimation of anisotropy matrix where all ##
## diagonal elements are identical ##
trafo <- function(variab) { variab[c(1, 2, 2, 2, 3)] }
RFcrossvalidate(estmodel, data=z, critical=0, spC=FALSE,
transform=list(c(TRUE, TRUE, FALSE, FALSE, TRUE),
trafo),
split=FALSE)
}
RFoptions(modus_operandi="normal")
FinalizeExample()
Run the code above in your browser using DataLab