Learn R Programming

RandomFields (version 3.0.35)

RFgetModelNames: Names of implemented covariance and variogram models

Description

Displays the names of covariance and variogram models (see RMmodel) and returns them as a list. The user may specify and group the models according to the following properties:
  • type of function ("positive definite","negative definite", etc.
  • whether the function depends on two arguments ("kernel") or on one argument only ("single variable")
  • types of isotropy
  • whether the model is an operator
  • whether the model is a normal scale mixture
  • whether the model has a finite range covariance
  • validity in certain dimensions of the coordinate space
  • maximal possible dimension of the coordinate space
  • uni- or multivariety
See Details for an explanation and RMmodelgenerator for possible states (values) of these properties.

Usage

RFgetModelNames(type = RC_TYPE, domain = RC_DOMAIN,
                isotropy = RC_ISOTROPY, operator = c(TRUE, FALSE),
                monotone = RC_MONOTONE,
                implied_monotonicities = length(monotone) == 1,
                finiterange = c(TRUE, FALSE),
                valid.in.dim = c(1, Inf), 
                vdim = c(1, 5),
                group.by=NULL,
                simpleArguments = FALSE,
                internal, newnames)

Arguments

type, domain, isotropy, operator, monotone, finiterange, vdim
see constants for the definition of RC_TYPE, RC_DOMAIN, etc. See also RMmodelgenerator.
implied_monotonicities
logical. If TRUE then all the models with a stronger monotonocity than the required one are also shown.
valid.in.dim
an optional integer indicating the dimension of the space where the model is valid
group.by
an optional character string; must be one of 'domain', 'isotropy', 'operator', 'monotone', 'finiterange','maxdim','vdim'
simpleArguments
logical. if TRUE, only models are considered whose arguments are all integer or real valued.
internal, newnames
both logical; internal might be also integer valued. If any of them are given, RFgetModelNames behaves very differently. See the Notes below.

Value

  • Either a vector of model names if the argument group.by is not used; or a list of vectors of model names if the argument group.by is used (with list elements specified by the categories of the grouping argument).

    In case internal or newnames is given, RFgetModelNames prints a table of the currently implemented covariance functions and the matching methods. RFgetModelNames returns NULL.

Details

The plain call RFgetModelNames() simply gives back a vector of the names of all implemented covariance and variogram models and operators, i.e. members of the class RMmodelgenerator.

The following arguments can be specified: [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]

All arguments allow also for vectors of values. In case of valid.in.dim the smallest value is taken. The interpretation is canonical. Note that the arguments stationarity, isotropy, operator, monotone, finiterange, maxdim, vdim are also slots (attributes) of the SP4-class RMmodelgenerator.

See Also

constants, RMmodelgenerator, RMmodel, RandomFields, RC_DOMAIN, RC_ISOTROPY

Examples

Run this code
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
# get vector of names of all functions
RFgetModelNames()

# get vector of names of all stationary objects of class RMmodelgenerator
RFgetModelNames(type="positive definite", domain="single variable")

# get list of models grouped by the stationarity attribute
RFgetModelNames(group.by=c("type"))


\dontrun{
# get list of all univariate stationary models
# additionally grouped by the isotropy attribute
str(RFgetModelNames(type="positive definite", domain="single variable",
                    vdim=1, group.by="isotropy"))

# get vector of all models which are operators
# and valid in the two-dimensional coordinate space
RFgetModelNames(type=c("tail correlation function",
                       "positive definite",
                       "negative definite",
                       "undefined"),
                operator=TRUE, valid.in.dim=2)

# processes and covariance function grouped by the stationarity
# argument and subsequently grouped by the isotropy argument
str(RFgetModelNames(type=c("positive definite", "negative definite", "process"),
                    group.by=c("type", "domain", "isotropy")))
}

FinalizeExample()

Run the code above in your browser using DataLab