RFoptions(..., no.readonly = TRUE)
tag = value
form, or a list of tagged
values.no.readonly=TRUE
then only rewritable arguments are returned.NULL
if any argument is given, and the full list of
arguments, otherwise. if no.readonly=FALSE
then additionally,
a list called readonly
is included containing
* covmaxchar
: the maximum length of a model name
* covnr
: number of currently implemented
variogram/covariance models (-1 means that none of the functions like
distrmaxchar
: max. name length for a distribution
* distrnr
: number of currently implemented
distributions
* maxdim
: maximum number of dimensions for a
random field
* maxmodels
: maximum number of elementary models in
definition of a complex covariance model
* methodmaxchar
: max. name length for methods
* methodnr
: number of currently implemented simulation methods
gauss
: Options for simulating Gaussian random fieldsgraphics
: Options for graphical outputgui
: Options for chyper
: Options for simulating hyperplane tessellationskrige
: Options for Krigingmaxstable
: Options for simulating max-stable random fieldsmpp
: Options for the random coins (shot noise) methodsnugget
: Options for the nugget effectabout_zero
about_zero
.
Default: 0.001
.n_estim_E
50000
.scatter_size
, scatter_max
RMscatter
that calculates
$\sum_{i=1}^n f(x + h_i)$ for some function $f$ and
for some distances $h_i$. Real valued and integer valued, respectively, or NA
.
Let $\varepsilon=$about_zero
, $s=$scatter_size
and $m=$scatter_max
.
We distinguish 4 cases:
scatter_size > 0
andscatter_max >= 0
Here,$n$equals$(2m)^d$.
and$h_i \in M = { (k s, \ldots, k s),\ldots, (m s, \ldots, m
s)}$with$k=-m$.scatter_size > 0
andscatter_max < 0
same as the previous case, but$m$is chosen such that$f(k_i e_i s_i) \approx \varepsilon$,$-k_i\in N$,$i=1,\ldots,d$and$f(m_i e_i s_i) \approx \varepsilon$,$m \in N$.scatter_size <= 0<="" code="">andscatter_max >= 0
This option is possible only for grids.
Here$h_i$runs on the given grid$i=1,\ldots,d$,
but at mostscatter_max
steps.=>
scatter_size <= 0<="" code="">andscatter_max < 0
this option is possible only for grids.
Here,$h_i$runs over the whole grid.=>
shape_power
shape_power
before used as
intensity function for the point process.
Default: 2.0
.general
: General options
2. br
: Options for Brown-Resnick
Fields
3. circulant
: Options for circulant embedding methods
coords
: Options for coordinates and units, see
coordinate systems
5. direct
: Options for simulating by simple matrix decomposition
6. distr
: Options for distributions, in particular empvario
: Options for calculating the empirical variogram
8. fit
: Options for gauss
: Options for simulating Gaussian random fields
10. graphics
: Options for graphical output
11. gui
: Options for hyper
: Options for simulating hyperplane tessellations
13. krige
: Options for Kriging
14. maxstable
: Options for simulating max-stable random fields
15. mpp
: Options for the random coins (shot noise) methods
16. nugget
: Options for the nugget effect
17. registers
: Register numbers
18. sequ
: Options for the sequential method
19. special
: Options for some special methods
20. spectral
: Options for the spectral (turning bands) method
21. tbm
: Options for the turning bands method
22. internal
: Internal
General comments
1. General options
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]2. Options for Brown-Resnick Fields
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object] 3. circulant
: Options for circulant embedding methods, cf. coords
: Options for coordinates and units
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]5. direct
: Options for simulating by simple matrix decomposition
[object Object],[object Object],[object Object]6. distr
: Options for distributions, in particular empvario
: Options for calculating the empirical variogram
[object Object],[object Object],[object Object],[object Object],[object Object] 8. fit
: Options for [object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Default: 'respect bound'
.
refine_onborder
TRUE
and an estimated parameter of the model
is close to the boundary, a second search for the optimum
is started.
Default: TRUE
}
minmixedvar
Default: 1/1000
}
solvesigma
solvesigma=TRUE
.This makes sense
if the number of independent variables is very small.
If solvesigma=FALSE
then the variance parameter is
treated as any other parameter to be estimated.
Default: FALSE
.
}
ratiotest_approx
TRUE
the approximative formula that twice the
difference of the likelihoods follow about a $\chi^2$
distribution is used. The parameter of freedom equals
the number of parameters to be estimated for the covariance
function, including those for the covariates.
Default: TRUE
}
reoptimise
TRUE && !only_users
then at a very last step,
the optimisation is redone with currently best parameters
and likelihood as scale parameter for TRUE
.
}
scale_max_relative_factor
scale_max_relative_factor
a warning is given that probably a nugget effect
is present.
Note: if scale_max_relative_factor
is greater
than lowerbound_scale_ls_factor
then
no warning is given as
the scale has the lower bound $(minimum distance
between different pairs of points) /$
lowerbound_scale_ls_factor
.
Default: 1000
}
scale_ratio
parscale
and fnscale
in the calls of scale_ratio
,
parscale
and fnscale
are reset and the optimisation
is redone.
Default: 0.1
.
}
shortnamelength
shortnamelength
letters.
Default: 4
.
}
sill
nugget
and variance
separately, they may also be estimated together under the
condition that nugget
+ variance
= sill
.
For the latter a finite value for sill
has to be supplied,
and nugget
and variance
are set to NA
.
sill
is only used for the standard model.
Default: NA
.
}
smalldataset
2000
.
}
split
TRUE
then TRUE
.
}
splitn_neighbours
maxn
is exceeded, then split
or less, but never more than
maxn
.
Default: c(3000, 200, 1000)
.
}
splitfactor_neighbours
2
.
}
split_refined
TRUE
then also submodels are fitted if splitted.
This takes more time, but
Default: TRUE
.
}
upperbound_scale_factor
upperbound_scale_factor
* (maximum distance
between all pairs of points).
Default: 3
.
}
upperbound_var_factor
upperbound_var_factor
* var(data
)
Default: 10
.
}
use_naturalscaling
TRUE
then internally, rescaled
covariance functions will be used for which
cov(1)$\approx$0.05.
use_naturalscaling
has the advantage that scale
and the form parameters of the model get use_naturalscaling
does not work for all models.
Note that this argument does not influence
the output of practicalrange
in use_naturalscaling=TRUE
:
Disadvantages if scale
and the shape parameter of a parameterised
covariance model can be estimated better if they are estimated
simultaneously.upperbound_scale_factor
andlowerbound_scale_factor
,
etc. might be more realistic.use_naturalscaling=TRUE
:
Default: TRUE
.
}
use_spam
spam
(sparse matrices)
be used for matrix calculations?
If TRUE
FALSE
,
it is never used. If NA
its use is determined by
the size and the sparsity of the matrix.
Default: NA
.
}
eps_zhou
shape_power
RandomFields
,
and RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
RFoptions()
############################################################
## ##
## use of exactness ##
## ##
############################################################
x <- seq(0, 1, if (interactive()) 1/30 else 0.5)
model <- RMgauss()
for (exactness in c(NA, FALSE, TRUE)) {
readline(paste("exactness: `", exactness, "'; press return"))
z <- RFsimulate(model, x, x, exactness=exactness,
stationary_only=NA, storing=TRUE)
print(RFgetModelInfo(which="internal")$internal$name)
}
FinalizeExample()
Run the code above in your browser using DataLab