RMdampedcos is a stationary isotropic covariance model.
The corresponding covariance function only depends on the distance $r \ge 0$ between
two points and is given by
$$C(r) = exp(-\lambda r) \cos(r).$$
Usage
RMdampedcos(lambda, var, scale, Aniso, proj)
Arguments
lambda
parameter whose allowed range depends on the dimension of the random field (see details)
var, scale, Aniso, proj
optional parameters; same meaning for any
RMmodel. If not passed, the above
covariance function remains unmodified.
The model is valid for any dimension $d$. However, depending on the dimension of
the random field the following bound for the parameter $\lambda$ has to be respected:
$$\lambda \ge 1/{\tan(\pi/(2d))}.$$
This covariance models a hole effect (cf. Chiles, J.-P. and Delfiner,
P. (1999), p. 92).
For $\lambda = 0$ we obtain the covariance function
$$C(r)=\cos(r)$$ which is only valid for $d=1$
and corresponds to RMbessel for
$\nu=-0.5$, there.
References
Chiles, J.-P. and Delfiner, P. (1999)Geostatistics. Modeling Spatial Uncertainty.New York: Wiley.
Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp,
P. (eds.) (2010)Handbook of Spatial Statistics.Boca Raton: Chapman & Hall/CRL.