RMfractgauss is a stationary isotropic covariance model.
The corresponding covariance function only depends on the distance $r \ge 0$ between
two points and is given by
$$C(r) = 0.5 ((r+1)^{\alpha}-2r^{\alpha}+|r-1|^{\alpha})$$
with $0 < \alpha \le 2$. It can only be used for one-dimensional random fields.
Usage
RMfractgauss(alpha,var, scale, Aniso, proj)
Arguments
alpha
$0 < \alpha \le 2$
var,scale,Aniso,proj
optional parameters; same meaning for any
RMmodel. If not passed, the above
covariance function remains unmodified.
The model is only valid for dimension $d = 1$. It
is the covariance function for the fractional Gaussian noise with
self-affinity index (Hurst parameter) $H=\alpha /2$ with $0 < \alpha \le 2$.
References
Gneiting, T. and Schlather, M. (2004)
Stochastic models which separate RFfractaldimension and Hurst effect.SIAM review46, 269--282.