$$C(h, t)=\frac{\Gamma(\nu + \phi(t))\Gamma(\nu + \delta)}{ \Gamma(\nu + \phi(t) + \delta) \Gamma(\nu)} W_{\nu + \phi(t)}(\|h -Vt\|)$$ if $\phi$ is a variogram model. It is given by $$C(h, t)=\frac{\Gamma(\nu + \phi(0)-\phi(t))\Gamma(\nu + \delta)}{ \Gamma(\nu + \phi(0)-\phi(t) + \delta) \Gamma(\nu)} W_{\nu + \phi(t)}(\|h -Vt\|)$$
if $\phi$ is a covariance model.
Here $\Gamma$ is the Gamma function; $W$ is the Whittle-Matern model (RMwhittle).
RMmastein(phi, nu, delta, var, scale, Aniso, proj)
set.seed(0)
model <- RMmastein(RMgauss(), nu=1, delta=10)
x <- seq(0, 10, if (interactive()) 0.1 else 3)
plot(RFsimulate(model, x=x, y=x))
Run the code above in your browser using DataLab