RMpower: Power operator for Variograms and Covariance functions
Description
RMpower yields a variogram or covariance model
from a given variogram or covariance model.
The variogram $\gamma$ of the model is given by
$$\gamma = \phi^\alpha$$
if $\phi$ is a variogram model.
The covariance $C$ of the model is given by
$$C(h) = \phi(0)-(\phi(0)-\phi(h))^\alpha$$
if $\phi$ is a covariance model.
Usage
RMpower(phi, alpha, var, scale, Aniso, proj)
Arguments
phi
a valid RMmodel; either a variogram model or a
covariance model
alpha
a numerical value in the interval [0,1]
var,scale,Aniso,proj
optional parameters; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.
If $\gamma$ is a variogram, then $\gamma^\alpha$ is a valid
variogram for $\alpha$ in the interval [0,1].
References
Schlather, M. (2012) Construction of covariance functions and
unconditional simulation of random fields. In
Porcu, E., Montero, J. M., Schlather, M.
Advances and Challenges in Space-time Modelling of Natural Events,
Springer, New York.