RPspectral(phi, loggauss, sp_lines, sp_grid, prop_factor, sigma)
RMmodel
;
specifies the covariance model to be simulated. Default: 500
.
grid=FALSE
,
and $k\pi/$sp_lines
for $k$ in 1:sp_lines
,
otherwise. This parameter is only considered
if the spectral measure, not the density is used.
Default: prop_factor
sigma
is not positive thenRandomFields
tries to find a good
choRPspectral
returns an object of class
RMmodel
ergodic=FALSE
,
the additive component are chosen proportional to their
variance. In total sp_lines
are simulated. If
ergodic=TRUE
, the components are simulated
separately and then added.
Default: FALSE
.
}
1e-25
.
}set.seed(0)
model <- RPspectral(RMmatern(nu=1))
y <- x <- seq(0,10,len=if (interactive()) 400 else 3)
z <- RFsimulate(model, x, y, n=2, grid=TRUE)
plot(z)
Run the code above in your browser using DataLab