The Whittle model is given by $$C(r)=W_{\nu}(r)=2^{1- \nu} \Gamma(\nu)^{-1}r^{\nu}K_{\nu}(r)$$ where $\nu > 0$ and $K_\nu$ is the modified Bessel function of second kind.
The Matern model is given by $$C(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} (\sqrt{2\nu}r)^\nu K_\nu(\sqrt{2\nu}r)$$
RMwhittle(nu, notinvnu, var, scale, Aniso, proj)RMmatern(nu, notinvnu, var, scale, Aniso, proj)
RMmodel
This is the normal scale mixture model of choice if the smoothness of a random field is to be parametrized: the sample paths of a Gaussian random field with this covariance structure are $m$ times differentiable if and only if $\nu > m$ (see Gelfand et al., 2010, p. 24).
Furthermore, the fractal dimension (see also
If $\nu=0.5$ the Matern model equals
For $\nu$ tending to $\infty$ a rescaled Gaussian
model
For generalisations see section
Tail correlation function (for $\nu \in (0,1/2]$)
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
x <- seq(0, 1, len=if (interactive()) 100 else 3)
model <- RMwhittle(nu=1, Aniso=matrix(nc=2, c(1.5, 3, -3, 4)))
plot(model, dim=2, xlim=c(-1,1))
z <- RFsimulate(model=model, x, x)
plot(z)
FinalizeExample()
Run the code above in your browser using DataLab