RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
StartExample()
RFoptions(modus_operandi="sloppy")
##############################################################
#
# Example : Simulation and fitting of a two-dimensional
# Gaussian random field with exponential covariance function
#
###############################################################
V <- 10
S <- 0.3
M <- 3
model <- RMexp(var=V, scale=S) + M
x <- y <- seq(1, 3, 0.1)
simulated <- RFsimulate(model = model, x=x, y=y)
plot(simulated)
# an alternative code to the above code:
simulated2 <- RFsimulate(model = ~ 1@RMfixed(beta=M) +
RMexp(var=V, scale=S),x=x, y=y, V=V, S=S, M=M)
plot(simulated2)
# Estimate parameters of underlying covariance function via
# maximum likelihood
model.na <- ~ 1@RMfixed(beta=NA) + RMexp(var=NA, scale=NA)
fitted <- RFfit(model=model.na, data=simulated)
# compare sample mean of data with ML estimate:
mean(simulated@data[,1])
fitted
\dontrun{
##############################################################
#
# Example 2: Fitting a standard linear mixed model using maximum
# likelihood to estimate the variance components
#
###############################################################
# Y = W*beta + Z*u + e
# where u ~ N(0, (sigma_u)^2 A) and e ~ N(0, (sigma_e)^2)
W <- rep(1,times=10)
Z <- matrix(rnorm(150) ,nrow=10, ncol=15)
A <- RFcovmatrix(0:14, model=RMexp())
response <- W*5 + Z
# Estimate beta, (sigma_u)^2 and (sigma_e)^2:
model <- response ~ W@RMfixed(beta=NA) +
Z@RMfixcov(A, var=NA) +
RMnugget(var=NA)
fitted <- RFfit(model=model, data=response, W=W, Z=Z, A=A)
}
\dontrun{
#### THIS EXAMPLE IS NOT PROGRAMMED YET
###########################################################
#
# Example 3: Simulate and fit a geostatistical model
#
###########################################################
# Simulate a Gaussian random field with trend m((x,y)) = 2 + 1.5 x - 3 y
# with vector of coordinates (x,y)
# and covariance function C(s,t) = 3*exp(-||(2*(s_1-t_1),s_2-t_2)||) +
# 1.5*exp(-||(2*(s_1-t_1),s_2-t_2)||^2)
# for s=(s_1,s_2) and t=(t_1,t_2)
model <- ~ RMtrend(mean=2) +
RMtrend(arbitraryfct=function(x) x, fctcoeff=1.5) +
RMtrend(arbitraryfct=function(y) y, fctcoeff=-3) +
RMplus(RMexp(var=3), RMgauss(var=1.5),
Aniso=matrix(c(2,0,0,1),nrow=2))
simulated <- RFsimulate(model=model,x=seq(0,2,0.1),y=seq(-1,3,0.2))
# equivalent model
model <- RMtrend(polydeg=1, polycoeff=c(2, 1.5, .3)) +
RMplus(RMexp(var=3), RMgauss(var=1.5),
Aniso=matrix(c(2,0,0,1), nrow=2))
simulated <- RFsimulate(model=model, x=seq(0,2,0.1), y=seq(-1,3,0.2))
# Estimate trend (polynomial of degree 1) and variance components such
# that var_exp = 2*var_gauss as in the true model used for simulation
model.na <- ~ RMtrend(polydeg=1) +
RMplus(RMexp(var=2),RMgauss(var=2),var=NA,
Aniso=matrix(c(NA,0,0,NA),nrow=2))
fit <- RFfit(model=model.na, data=simulated)
}
\dontrun{
#### THIS EXAMPLE IS NOT PROGRAMMED YET
####################################################################
#
# Example 4: Simulate and fit a multivariate geostatistical model
#
####################################################################
# Simulate a bivariate Gaussian random field with trend
# m_1((x,y)) = x + 2*y and m_2((x,y)) = 3*x + 4*y
# where m_1 is a hyperplane describing the trend for the first response
# variable and m_2 is the trend for the second one;
# the covariance function is a multivariate nugget effect
x <- y <- 0:10
model <- ~ RMtrend(plane=matrix(c(1,2,3,4), ncol=2)) +
RMnugget(var=0.5, vdim=2)
multi.simulated <- RFsimulate(model=model, x=x, y=y)
# Fit the Gaussian random field with unknown trend for the second
# response variable and unknown variances
model.na <- ~ RMtrend(plane=matrix(c(NA,NA,NA,NA), ncol=2)) +
RMnugget(var=NA, vdim=2)
fit <- RFfit(model=model.na, data=multi.simulated)
}
RFoptions(modus_operandi="normal")
FinalizeExample()
Run the code above in your browser using DataLab