Let $$\delta_{ij} = \mu + \gamma_{ij} + 1.$$
Then,
$$C_{n}(h) = c_{ij} (C_{n, \delta} (h / s_{ij}))_{i,j=1,2}$$
and $C_{n, \delta}$
is the generalised Gneiting model
with parameters $n$ and $\delta$, see
RMgengneiting
, i.e.,
$$C_{\kappa=0, \delta}(r) = (1-r)^\beta 1_{[0,1]}(r), \qquad \beta=\delta
+ 2\kappa + 1/2;$$
$$C_{\kappa=1, \delta}(r) = \left(1+\beta r \right)(1-r)^{\beta} 1_{[0,1]}(r),
\qquad \beta = \delta + 2\kappa + 1/2;$$
$$C_{\kappa=2, \delta}(r)=\left( 1 + \beta r + \frac{\beta^{2} -
1}{3}r^{2} \right)(1-r)^{\beta} 1_{[0,1]}(r), \qquad
\beta=\delta + 2\kappa + 1/2;$$
$$C_{\kappa=3, \delta}(r)=\left( 1 + \beta r + \frac{(2\beta^{2}-3)}{5} r^{2}+
\frac{(\beta^2 - 4)\beta}{15} r^{3} \right)(1-r)^\beta 1_{[0,1]}(r),
\qquad \beta=\delta+2\kappa+1/2.$$
RMbigneiting(kappa, mu, s, sred12, gamma, cdiag, rhored, c, var, scale, Aniso, proj)
mu
has to be greater than or equal to
$\frac{d}{2}$ where $d$ is the (arbitrary)
dimension of the randomfield.sred12 *
$\min{s_{11},s_{22}}$.gamma
equals
$(\gamma_{11},\gamma_{21},\gamma_{22})$.
Note that $\gamma_{12} =\gamma_{21}$. Either
rhored
and cdiag
or c
must be given.
RMmodel
The constant $m$ in the formula above is obtained as follows: $$m = \min{1, m_{-1}, m_{+1}}$$ Let $$a = 2 \gamma_{12} - \gamma_{11} -\gamma_{22}$$ $$b = -2 \gamma_{12} (s_{11} + s_{22}) + \gamma_{11} (s_{12} + s_{22}) + \gamma_{22} (s_{12} + s_{11})$$ $$e = 2 \gamma_{12} s_{11}s_{22} - \gamma_{11}s_{12}s_{22} - \gamma_{22}s_{12}s_{11}$$ $$d = b^2 - 4ae$$ $$t_j =\frac{- b + j \sqrt d}{2 a}$$ If $d \ge0$ and $t_j \not\in (0, s_{12})$ then $m_j=\infty$ else $$m_j = \frac{(1 - t_j/s_{11})^{\gamma_{11}}(1 - t_j/s_{22})^{\gamma_{22}}}{(1 - t_j/s_{12})^{2 \gamma_{11}} }{ m_j = (1 - t_j/s_{11})^{\gamma_{11}} (1 - t_j/s_{22})^{\gamma_{22}} / (1 - t_j/s_{12})^{2 \gamma_{11}} }$$
In the function c
is
passed, then the above condition is checked, or rhored
is passed
then $c_{12}$ is calculated by the above formula.
RMbigeneiting
is based on this original work.
D.J. Daley, E. Porcu and M. Bevilacqua have published end of
2014 an article intentionally
without clarifying the genuine authorship ofRMbigneiting
,
in particular,
neither referring to this original work nor toRMbigneiting
since version 3.0.5 (05 Dec
2013).RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
StartExample()model <- RMbigneiting(kappa=2, mu=0.5, gamma=c(0, 3, 6), rhored=1)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
FinalizeExample()
Run the code above in your browser using DataLab