Let $$\delta_{ij} = \mu + \gamma_{ij} + 1.$$
Then,
$$C_{n}(h) = c_{ij} (C_{n, \delta} (h / s_{ij}))_{i,j=1,2}$$
and $C_{n, \delta}$
is the generalised Gneiting model
with parameters $n$ and $\delta$, see
RMgengneiting, i.e.,
$$C_{\kappa=0, \delta}(r) = (1-r)^\beta 1_{[0,1]}(r), \qquad \beta=\delta
+ 2\kappa + 1/2;$$
$$C_{\kappa=1, \delta}(r) = \left(1+\beta r \right)(1-r)^{\beta} 1_{[0,1]}(r),
\qquad \beta = \delta + 2\kappa + 1/2;$$
$$C_{\kappa=2, \delta}(r)=\left( 1 + \beta r + \frac{\beta^{2} -
1}{3}r^{2} \right)(1-r)^{\beta} 1_{[0,1]}(r), \qquad
\beta=\delta + 2\kappa + 1/2;$$
$$C_{\kappa=3, \delta}(r)=\left( 1 + \beta r + \frac{(2\beta^{2}-3)}{5} r^{2}+
\frac{(\beta^2 - 4)\beta}{15} r^{3} \right)(1-r)^\beta 1_{[0,1]}(r),
\qquad \beta=\delta+2\kappa+1/2.$$
RMbigneiting(kappa, mu, s, sred12, gamma, cdiag, rhored, c, var, scale, Aniso, proj)mu has to be greater than or equal to
$\frac{d}{2}$ where $d$ is the (arbitrary)
dimension of the randomfield.sred12 *
$\min{s_{11},s_{22}}$.gamma equals
$(\gamma_{11},\gamma_{21},\gamma_{22})$.
Note that $\gamma_{12} =\gamma_{21}$. Either
rhored and cdiag or c must be given.
RMmodelThe constant $m$ in the formula above is obtained as follows: $$m = \min{1, m_{-1}, m_{+1}}$$ Let $$a = 2 \gamma_{12} - \gamma_{11} -\gamma_{22}$$ $$b = -2 \gamma_{12} (s_{11} + s_{22}) + \gamma_{11} (s_{12} + s_{22}) + \gamma_{22} (s_{12} + s_{11})$$ $$e = 2 \gamma_{12} s_{11}s_{22} - \gamma_{11}s_{12}s_{22} - \gamma_{22}s_{12}s_{11}$$ $$d = b^2 - 4ae$$ $$t_j =\frac{- b + j \sqrt d}{2 a}$$ If $d \ge0$ and $t_j \not\in (0, s_{12})$ then $m_j=\infty$ else $$m_j = \frac{(1 - t_j/s_{11})^{\gamma_{11}}(1 - t_j/s_{22})^{\gamma_{22}}}{(1 - t_j/s_{12})^{2 \gamma_{11}} }{ m_j = (1 - t_j/s_{11})^{\gamma_{11}} (1 - t_j/s_{22})^{\gamma_{22}} / (1 - t_j/s_{12})^{2 \gamma_{11}} }$$
In the function c is
passed, then the above condition is checked, or rhored is passed
then $c_{12}$ is calculated by the above formula.
RMbigeneitingis based on this original work.
D.J. Daley, E. Porcu and M. Bevilacqua have published end of
2014 an article intentionally
without clarifying the genuine authorship ofRMbigneiting,
in particular,
neither referring to this original work nor toRMbigneitingsince version 3.0.5 (05 Dec
2013).RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
StartExample()model <- RMbigneiting(kappa=2, mu=0.5, gamma=c(0, 3, 6), rhored=1)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
FinalizeExample()Run the code above in your browser using DataLab