Learn R Programming

RandomFields (version 3.1.12)

RMnsst: Non-Separable Space-Time model

Description

RMnsst is a univariate stationary spaceisotropic covariance model whose corresponding covariance is given by $$C(h,u)= (\psi(u)+1)^{-\delta/2} \phi(h /\sqrt(\psi(u) +1))$$

Usage

RMnsst(phi, psi, delta, var, scale, Aniso, proj)

Arguments

phi
is normal mixture RMmodel, cf. RFgetModelNames(monotone="normal mixture")
psi
is a variogram RMmodel.
delta
a numerical value; must be greater than or equal to the spatial dimension of the field
var,scale,Aniso,proj
optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Value

Details

This model is used for space-time modelling where the spatial component is isotropic.

References

  • Gneiting, T. (1997) Normal scale mixtures and dual probability densitites,J. Stat. Comput. Simul.59, 375-384.
  • Gneiting, T. (2002) Nonseparable, stationary covariance functions for space-time data,JASA97, 590-600.
  • Gneiting, T. and Schlather, M. (2001) Space-time covariance models. In El-Shaarawi, A.H. and Piegorsch, W.W.:The Encyclopedia of Environmetrics.Chichester: Wiley.

    % \item Zastavnyi, V. and Porcu, E. (2011) % Caracterization theorems for the Gneiting class space-time % covariances. % \emph{Bernoulli}, \bold{??}.

  • Schlather, M. (2010) On some covariance models based on normal scale mixtures.Bernoulli,16, 780-797.

See Also

RMgennsst, RMmodel, RFsimulate, RFfit.

Examples

Run this code
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
StartExample()
model <- RMnsst(phi=RMgauss(), psi=RMfbm(alpha=1), delta=2)
x <- seq(0, 10, 0.25)
plot(model, dim=2)
plot(RFsimulate(model, x=x, y=x))
FinalizeExample()

Run the code above in your browser using DataLab