RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## first simulate some data with a sine and a mean as trend
repet <- 100
x <- seq(0, pi, len=10)
trend <- 2 * sin(R.p(new="isotropic")) + 3
model <- RMexp(var=2, scale=1) + trend
data <- RFsimulate(model, x=x, n=repet)
## now, let us estimate variance, scale, and two parameters of the trend
model2 <- RMexp(var=NA, scale=NA) + NA * sin(R.p(new="isotropic")) + NA
print(RFfit(model2, data=data))
## model2 can be made explicite by enclosing the trend parts by
## 'RMtrend'
model3 <- RMexp(var=NA, scale=NA) + NA *
RMtrend(sin(R.p(new="isotropic"))) + RMtrend(NA)
print(RFfit(model2, data=data))
## IMPORTANT: substraction is not a way to combine definite models
## with trends
trend <- -1
(model0 <- RMexp(var=0.4) + trend) ## exponential covariance with mean -1
(model1 <- RMexp(var=0.4) + -1) ## same as model0
(model2 <- RMexp(var=0.4) + RMtrend(-1)) ## same as model0
(model3 <- RMexp(var=0.4) - 1) ## this is a purely deterministic model
## with exponential trend
plot(RFsimulate(model=model0, x=x, y=x)) ## exponential covariance
## and mean -1
plot(RFsimulate(model=model1, x=x, y=x)) ## dito
plot(RFsimulate(model=model2, x=x, y=x)) ## dito
plot(RFsimulate(model=model3, x=x, y=x)) ## purely deterministic model!
Run the code above in your browser using DataLab