# NOT RUN {
##########################
## Example showing the use of chol2mv and tcholRHS
n <- 10
M <- matrix(nc=n, runif(n^2))
M <- M %*% t(M) + diag(n)
C <- cholx(M)
set.seed(0)
v1 <- chol2mv(C, 1)
set.seed(0)
v2 <- tcholRHS(C, rnorm(n))
stopifnot(all(v1 == v2))
##########################
## The following example shows pivoted Cholesky can be used
## and the pivotation permutation can be transferred to
## subsequent Cholesky decompositions
# }
# NOT RUN {
<!-- % library(RandomFieldsUtils) -->
# }
# NOT RUN {
set.seed(0)
n <- if (interactive()) 1000 else 100
x <- 1:n
y <- runif(n)
M <- x %*% t(x) + rev(x) %*% t(rev(x)) + y %*% t(y)
## do pivoting
RFoptions(pivot = PIVOT_DO, la_mode=LA_INTERN)
print(system.time(C <- cholx(M)))
print(range(crossprod(C) - M))
str(C)
## use the same pivoted decomposition as in the previous decomposition
M2 <- M + n * diag(1:n)
RFoptions(pivot = PIVOT_IDX, la_mode=LA_INTERN,
pivot_idx = attr(C, "pivot_idx"),
pivot_actual_size = attr(C, "pivot_actual_size"))
print(system.time(C2 <- cholx(M2)))
print(range(crossprod(C2) - M2))
range((crossprod(C2) - M2) / M2)
str(C2)
RFoptions(pivot = PIVOT_AUTO, la_mode = LA_AUTO)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab