Learn R Programming

RcmdrMisc (version 2.9-1)

plotMeans: Plot Means for One or Two-Way Layout

Description

Plots cell means for a numeric variable in each category of a factor or in each combination of categories of two factors, optionally along with error bars based on cell standard errors or standard deviations.

Usage

plotMeans(response, factor1, factor2, 
    error.bars = c("se", "sd", "conf.int", "none"),
    level=0.95, xlab=deparse(substitute(factor1)), 
    ylab=paste("mean of", deparse(substitute(response))),
    legend.lab=deparse(substitute(factor2)), 
    legend.pos=c("farright", "bottomright", "bottom", "bottomleft", 
                 "left", "topleft", "top", "topright", "right", "center"),
    main="Plot of Means",
    pch=1:n.levs.2, lty=1:n.levs.2, col=palette(), connect=TRUE, ...)

Value

The function invisibly returns NULL.

Arguments

response

Numeric variable for which means are to be computed.

factor1

Factor defining horizontal axis of the plot.

factor2

If present, factor defining profiles of means

error.bars

If "se", the default, error bars around means give plus or minus one standard error of the mean; if "sd", error bars give plus or minus one standard deviation; if "conf.int", error bars give a confidence interval around each mean; if "none", error bars are suppressed.

level

level of confidence for confidence intervals; default is .95

xlab

Label for horizontal axis.

ylab

Label for vertical axis.

legend.lab

Label for legend.

legend.pos

Position of legend; if "farright" (the default), extra space is left at the right of the plot.

main

Label for the graph.

pch

Plotting characters for profiles of means.

lty

Line types for profiles of means.

col

Colours for profiles of means

connect

connect profiles of means, default TRUE.

...

arguments to be passed to plot.

Author

John Fox jfox@mcmaster.ca

See Also

Examples

Run this code
if (require(car)){
    data(Moore)
    with(Moore, plotMeans(conformity, fcategory, partner.status, ylim=c(0, 25)))
}

Run the code above in your browser using DataLab