## Rosenbrock Banana function
## The function has a global minimum f(x) = 0 at the point (0,0).
## Note that the vector of parameters to be optimized must be the first
## argument of the objective function passed to DEoptim.
Rosenbrock <- function(x){
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2
}
lower <- c(-10, -10)
upper <- -lower
set.seed(1234)
outDEoptim <- DEoptim(Rosenbrock, lower, upper)
## print output information
summary(outDEoptim)
## plot the best members
plot(outDEoptim, type = 'b')
## plot the best values
dev.new()
plot(outDEoptim, plot.type = "bestvalit", type = 'b', col = 'blue')
## rerun the optimization, and store intermediate populations
outDEoptim <- DEoptim(Rosenbrock, lower, upper,
DEoptim.control(itermax = 500,
storepopfrom = 1, storepopfreq = 2))
summary(outDEoptim)
## plot intermediate populations
dev.new()
plot(outDEoptim, plot.type = "storepop")
## Wild function
Wild <- function(x)
10 * sin(0.3 * x) * sin(1.3 * x^2) +
0.00001 * x^4 + 0.2 * x + 80
outDEoptim = DEoptim(Wild, lower = -50, upper = 50,
DEoptim.control(trace = FALSE, storepopfrom = 50,
storepopfreq = 1))
plot(outDEoptim, type = 'b')
dev.new()
plot(outDEoptim, plot.type = "bestvalit", type = 'b')
if (FALSE) {
## an example with a normal mixture model: requires package mvtnorm
library(mvtnorm)
## neg value of the density function
negPdfMix <- function(x) {
tmp <- 0.5 * dmvnorm(x, c(-3, -3)) + 0.5 * dmvnorm(x, c(3, 3))
-tmp
}
## wrapper plotting function
plotNegPdfMix <- function(x1, x2)
negPdfMix(cbind(x1, x2))
## contour plot of the mixture
x1 <- x2 <- seq(from = -10.0, to = 10.0, by = 0.1)
thexlim <- theylim <- range(x1)
z <- outer(x1, x2, FUN = plotNegPdfMix)
contour(x1, x2, z, nlevel = 20, las = 1, col = rainbow(20),
xlim = thexlim, ylim = theylim)
set.seed(1234)
outDEoptim <- DEoptim(negPdfMix, c(-10, -10), c(10, 10),
DEoptim.control(NP = 100, itermax = 100, storepopfrom = 1,
storepopfreq = 5))
## convergence plot
dev.new()
plot(outDEoptim)
## the intermediate populations indicate the bi-modality of the function
dev.new()
plot(outDEoptim, plot.type = "storepop")
}
Run the code above in your browser using DataLab