x <- matrix(1:16, nrow=4)
## the squared rolling sum -- we square the sum of our rolled results
rolling_sqsum <- rollit( final_trans="x*x" )
rolling_sqsum( x, 4 )
rolling_sqsum( x, 4, by.column=FALSE )
cbind( as.vector(rolling_sqsum(x, 4)), apply(x, 2, function(x) { sum(x)^2 } ) )
## implement your own variance function
## we can use the sugar function 'mean' to get
## the mean of x
const_vars <- list(m = "mean(x)")
var_fun <- "( (x-m) * (x-m) )/(N-1)"
rolling_var <- rollit( var_fun, const_vars=const_vars )
x <- c(1, 5, 10, 15)
cbind( rolling_var(x, 2), roll_var(x, 2) )
## use a function from cmath
rolling_log10 <- rollit( "log10(x)" )
rolling_log10( 10^(1:5), 2 )
## rolling product
rolling_prod <- rollit( combine="*" )
rolling_prod( 1:10, 2 )
## using weights to specify something like a 'by' argument
rolling_prod( 1:10, 3, weights=c(1,0,1) )
## a benchmark
if( require("microbenchmark") && require("zoo") ) {
x <- rnorm(1E4)
microbenchmark(
rolling_var(x, 100),
roll_var(x, 100),
rollapply(x, 100, var),
times=10
)
}
Run the code above in your browser using DataLab