# NOT RUN {
## create 3 datasets of intrinsic dimension 2.
X1 = aux.gensamples(dname="swiss")
X2 = aux.gensamples(dname="ribbon")
X3 = aux.gensamples(dname="saddle")
## acquire an estimate for intrinsic dimension
out1 = est.gdistnn(X1, k=10)
out2 = est.gdistnn(X2, k=10)
out3 = est.gdistnn(X3, k=10)
## print the results
sprintf("* est.gdistnn : estimated dimension for 'swiss' data is %.2f.",out1$estdim)
sprintf("* est.gdistnn : estimated dimension for 'ribbon' data is %.2f.",out2$estdim)
sprintf("* est.gdistnn : estimated dimension for 'saddle' data is %.2f.",out3$estdim)
line1 = paste0("* est.gdistnn : 'swiss' estiamte is ",round(out1$estdim,2))
line2 = paste0("* est.gdistnn : 'ribbon' estiamte is ",round(out2$estdim,2))
line3 = paste0("* est.gdistnn : 'saddle' estiamte is ",round(out3$estdim,2))
cat(paste0(line1,"\n",line2,"\n",line3))
## compare with local-dimension estimate
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
hist(out1$estloc, main="Result-'Swiss'", xlab="local dimension")
abline(v=out1$estdim, lwd=3, col="red")
hist(out2$estloc, main="Result-'Ribbon'", xlab="local dimension")
abline(v=out2$estdim, lwd=3, col="red")
hist(out3$estloc, main="Result-'Saddle'", xlab="local dimension")
abline(v=out2$estdim, lwd=3, col="red")
par(opar)
# }
# NOT RUN {
# }
Run the code above in your browser using DataLab